Behavior-Driven Visualization Recommendation

Architecture

Architecture

Example Recommendation

Example Recommendation

Behavior-Driven Visualization Recommendation (BDVR) is a novel approach to visualization recommendation that monitors user behavior for implicit signals of user intent to provide more effective recommendation.  This is in contrast to previous approaches which are either insensitive to user intent or require explicit, user specified task information.  BDVR consists of two distinct phases: (1) pattern detection, and (2) visualization recommendation.  In the first phase, user behavior is analyzed dynamically to find semantically meaningful interaction patterns using a library of pattern definitions developed through observations of real-world visual analytic activity.  In the second phase, our BDVR algorithm uses the detected patterns to infer a user’s intended visual task.  It then automatically suggests alternative visualizations that support the inferred visual task more directly than the user’s current visualization.

This technology has been built into our lab’s HARVEST visual analytic system via which we have conducted users studies to measure the effectiveness of BDVR.  The study results show that our approach shortens task completion time and reduces error rates when compared to behavior-agnostic recommendation.

Publications

David Gotz and Zhen Wen. Behavior-Driven Visualization Recommendation. ACM International Conference on Intelligent User Interfaces, Sanibel, Florida (2009).
[PDF, 8.78M]

Sch of Inform and Libr Science