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ABSTRACT

The display of multivariate data is a common task in data visualiza-
tion. However as dimensionality increases, it becomes increasingly
difficult to visualize all dimensions using standard multivariate vi-
sualization techniques, such as parallel coordinates. Dimension re-
duction is often used to show relationships between data objects in a
lower-dimensional representation, but the relationships between data
objects and the original dimensions is typically lost. We introduce
Dual View, a visualization technique for high-dimensional datasets
that directly represents both data objects and data dimensions in
separate 2D layouts. Linked views, spatial aggregation, and itera-
tive layout refinement enables the exploration of high-dimensional
datasets. We present the underlying algorithms for layout and inter-
action, a prototype Dual View user interface, and some examples
applying Dual View to multidimensional datasets.

Index Terms: H.5.2 [Information Systems]: Information Interfaces
and Presentation—User Interfaces; 1.3.8 [Computing Methodolo-
gies]: Computer Graphics—Applications

1 INTRODUCTION

The collection and analysis of very large and complex datasets has
become widespread across a range of domains in recent years. Data
visualization is often employed to help analyze and understand such
datasets, and many existing visualization techniques can be directly
applied in cases of increased data volume—e.g. a bar chart show-
ing the distribution of a binary variable works equally well for ten
records as for 1 billion records. However increasing data complexity,
including many dimensions of different types, can be problematic
for common visualization techniques. Complex high-dimensional
datasets can contain hundreds, or thousands, of variables. In con-
trast, the most complex example in a survey of the state of the art in
parallel coordinates contains just eight dimensions [3], and a related
technique includes examples of up to 26 visualized dimensions [1].
Dimension reduction techniques such as principal component analy-
sis (PCA) and multidimensional scaling (MDS), are often used to
visualize multidimensional datasets by showing relationships be-
tween data objects in a lower-dimensional representation. However,
these techniques typically fail to retain the relationships between
data objects and the original dimensions.

Dual View is a visualization technique designed to address this
challenge. It directly represents both data objects and data dimen-
sions in separate 2D layouts (Figure 1). Dual View combines linked
views of relationships among and between objects and dimensions,
spatial aggregation, and iterative layout refinement to enable the
exploration of high-dimensional datasets. Moreover, it can be ap-
plied to both numeric and categorical dimensions. We present the
underlying algorithms, a prototype Dual View user interface, and
some examples applying Dual View to real world datasets.
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Figure 1: A Dual View visualization of a multivariate dataset with
167 dimensions (molecular shape descriptors) on the left, and 476
objects (molecules) on the right. Interactive highlighting of 13 cells
representing 18 similar dimensions (dashed box) shows the relation
of these dimensions to the other dimensions and data objects via
color. For example, a group of objects with similar low values for those
dimensions can be seen in blue.

2 METHODS

The fundamental concept of Dual View is to provide a 2D view of
data objects, as is common with dimension reduction techniques,
along with a separate 2D view of the data dimensions, such that each
dimension and each object is directly represented.

2.1 Relations

Relations calculated (a) among dimensions, (b) among objects, and
(c) between objects and dimensions, are used for 2D layout and
interactive highlighting.

Dimension Relations. For dimension relations, different meth-
ods are used depending on the dimension types. Numeric-numeric
relations are computed using Pearson’s r, which results in a value
in the range [-1, 1], where -1 is total negative correlation, 0 is no
correlation, and 1 is total positive correlation. Numeric-categorical
relations are computed using multiple regression with £ — 1 variables
for a categorical variable with k labels. The regression R value pro-
vides a value in the range [0, 1], with 0 indicating no association,
and 1 indicating that 100% of the variability in the numeric variable
is explained by the categorical variable. Categorical-categorical
relations are computed using Cramér’s V, which also provides an
association value in the range [0, 1].

Object Relations. For relations between objects, the object simi-
larity across all dimensions is computed. Our prototype uses cosine
similarity, though other similarity metrics could also be used.

Dimension-Object Relations. Relations between dimensions
and objects are determined by a normalized value, V' (in the range
[0, 1]) from the object value v for that dimension d. For numeric

dimensions, this is a straightforward linear mapping: v/ = V=l

ax—dmin *

For categorical dimensions with & labels there is no inherent mapping
from a label a number in the range [0, 1]. In order to emphasize
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Figure 2: Overview of hexagonal glyph.

“rare” values, each label is sorted by decreasing frequency, and then
mapped to [0, 1] based on the sorted index v;: v/ = 4.

‘When mapping to color, dimension relations map values from [-1,
0, 1] to [blue, light grey, red] in order to be able to display negative
vs. positive correlations. Categorical relations (in the range [0, 1])
will this always range from light grey to red. All other relations map

values from [0, 0.5, 1] to [blue, light grey, red].

2.2 Layout

We use t-SNE [4] for our 2D layouts to emphasize clusters in the
data, although other techniques (e.g., PCA, MDS) could also be
used. Dimensions layouts use the computed dimension relations.
For numeric-numeric dimension relations, the absolute value of the
correlation, |r|, is used such that highly related dimensions should
be clustered together, even if the relation is negative. Objects are
laid out using the normalized values for each dimension. The user
can control t-SNE parameters such as perplexity, early exaggera-
tion, learning rate, and number of iterations. In order to handle
over-plotting issues when rendering many data points, hexagonal
binning is used [2]. Each hexagonal grid cell containing at least one
data point contains a hexagonal glyph with area proportional to the
number of data points within the cell (Figure 2), normalized to the
maximum number per grid cell in each layout.

2.3 Interaction and Visualization

Users can select dimensions and objects via clicking individual grid
cells, or dragging a selection rectangle. Selected cells are repre-
sented with a grey halo. For a given selection, a selection connection
is computed for each data object and dimension, representing the
distribution of the relations between that dimension/object and the
selection. Each connection consists of two components: a central
tendency value and a consistency measure. The interior of the hexag-
onal glyph is colored as described in Section 2.1, and the consistency
is displayed via the darkness of the glyph outline. The current pro-
totype enables the user to choose between mean or median for the
value, and standard deviation, p-value, or extremeness for consis-
tency. For a selection size n, the extremeness is calculated as the
average normalized distance from the midpoint of the normalized
range for that relation, e.g.:
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The extremeness helps differentiate between (a) connections with
consistent mid-range relations to the current selection, and (b) con-
nections with distributions of high and low relations (Figure 3).
Since each hexagonal glyph can represent multiple data dimensions
or objects, the average value and consistency are displayed.

Since both dimensions and objects can be selected at the same
time, the dimension and object views both adopt priority-based high-
lighting. For the dimension layout, selected objects take precedence,
and vice versa. The user can also mouse-over any populated cell
to see a tooltip with the dimension/object names in that cell. In the
absence of a selection, this cell will be used for highlighting. Finally,
the user can choose to recompute the t-SNE layout for dimensions

Figure 3: Hexagonal glyph appearance for different selection connec-
tion distributions, mapping extremeness to outline intensity.
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Figure 4: A visualization of a multivariate dataset in which the user
has refined the dimension layout based on the highlighted objects.
A cluster of similar dimensions (various automobile attributes) with
respect to those objects (automobiles) can be seen in the top-left of
the dimension layout.

using just the selected objects, and vice versa, enabling the user to it-
eratively explore alternative layouts based on different combinations
of objects and dimensions (Figure 4).

3 LIMITATIONS AND FUTURE WORK

The Dual View technique is intended to provide a useful overview
of large multidimensional datasets to identify potential relationship
of interest for investigation. Future work will include incorporating
application-specific supplementary visualizations to provide detailed
views of the user’s analytic focus, as well as expanding the interac-
tive capabilities to include concepts such as multiple groupings of
objects and dimensions.

Although the visualization design is designed to handle arbitrary
numbers of dimensions and objects via aggregation, current perfor-
mance limits its applicability to a few hundred dimensions/objects,
as all computation is performed on the fly in the browser. We
plan on exploring ways to increase the performance, including pre-
computation of relations.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 1704018.

REFERENCES

[1] D. Borland, W. Vivian L., and W. E. Hammond. Multivariate visual-
ization of system-wide National Health Service data using radial coor-
dinates. In Proceedings of the 2014 Workshop on Visual Analytics in
Healthcare (VAHC 2014), 2014.

[2] D.B. Carr, R. J. Littlefield, W. L. Nicholson, and J. S. Littlefield. Scat-

terplot matrix techniques for large N. Journal of the American Statistical

Association, 82(398):424-436, 1987. doi: 10.2307/2289444

J. Heinrich and D. Weiskopf. State of the Art of Parallel Coordinates. In

M. Sbert and L. Szirmay-Kalos, eds., Eurographics 2013 - State of the

Art Reports. The Eurographics Association, 2012. doi: 10.2312/conf/

EG2013/stars/095-116

L. van der Maaten and G. Hinton. Visualizing High-Dimensional Data

Using t-SNE. Journal of Machine Learning Research, 9:2579-2605,

2008.

3

—

[4

—



	Introduction
	Methods
	Relations
	Layout
	Interaction and Visualization

	Limitations and Future Work

