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Fig. 1. Outflow aggregates temporal event data from a cohort of patients and visualizes alternative clinical pathways using color-coded
edges that map to patient outcome. Interactive capabilities allow users to explore the data and uncover insights.

Abstract—Electronic Medical Record (EMR) databases contain a large amount of temporal events such as diagnosis dates for
various symptoms. Analyzing disease progression pathways in terms of these observed events can provide important insights into
how diseases evolve over time. Moreover, connecting these pathways to the eventual outcomes of the corresponding patients can
help clinicians understand how certain progression paths may lead to better or worse outcomes. In this paper, we describe the
Outflow visualization technique, designed to summarize temporal event data that has been extracted from the EMRs of a cohort of
patients. We include sample analyses to show examples of the insights that can be learned from this visualization.
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1 INTRODUCTION

Electronic medical records (EMRs) are proliferating throughout the
healthcare system. At major medical institutions such as hospitals
and large medical groups, these computer-based systems contain vast
amounts of historical patient data complete with patient profile in-
formation, structured observational data such as diagnosis codes and
medications, as well as unstructured physician notes. The informa-
tion in these enormous databases can be useful in guiding the diagno-
sis of incoming patients or in clinical studies of a disease. However,
the vast amount of information can be overwhelming and makes these
datasets difficult to analyze. In particular, EMR databases contain a
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large amount of temporal disease events such as diagnosis dates and
the onset dates for various symptoms. Analyzing disease progression
pathways in terms of these observed events can provide important in-
sights into how diseases evolve over time. Moreover, connecting these
pathways to the eventual outcomes of the corresponding patients can
help clinicians understand how certain progression paths may lead to
better or worse outcomes.

In this paper, we describe the Outflow visualization technique. Out-
flow is designed to summarize temporal event data that has been ex-
tracted from the EMRs of a cohort of patients. We present a novel
interactive visual design which combines multiple patient records into
a graph-based visual presentation. Users can manipulate the visualiza-
tion through direct interaction techniques (e.g., selection and brushing)
and a series of control widgets. The interactions allow users to explore
the data in search of insights. Throughout the paper we describe Out-
flow using a motivating problem related to the diagnosis of congestive
heart failure. We include two sample analyses to show examples of the
insights that can be learned from this visualization.

The rest of the paper are organized as follows. We describe our
motivating problem in Section 2 and review related work in Section 3.
We explain the design of Outflow in Section 4 and demonstrate pre-
liminary analyses in Section 5. The paper concludes in Section 6.



Fig. 2. Multiple medical records are aggregated into a representation
called an Outflow graph. This structure is a directed acyclic graph (DAG)
that captures the various event sequences that led to the alignment point
and all the sequences that occurred after the alignment point. Aggregate
patient statistics are then anchored to the graph to describe specific
patient subpopulations.

2 MOTIVATING PROBLEM

Congestive heart failure (CHF) is generally defined as the inability
of the heart to supply sufficient blood flow to meet the needs of the
body. CHF is a common, costly, and potentially deadly condition that
afflicts roughly 2% of adults in developed countries with rates growing
to 6-10% for those over 65 years of age [12]. The disease is difficult
to manage and no system of diagnostic criteria has been universally
accepted as the gold standard.

One commonly used system comes from the Framingham
study [11]. This system requires the simultaneous presence of at least
two major symptoms (e.g., S3 gallop, Acute pulmonary edema, Car-
diomegaly) or one major symptom in conjunction with two minor
symptoms (e.g., Nocturnal cough, Pleural effusion, Hepatomegaly).
In total, 18 distinct Framingham symptoms have been defined.

While these symptoms are used regularly to diagnose CHF, our
medical collaborators are interested in understanding how the various
symptoms and their order of onset correlate with patient outcome. To
examine this problem, we were given access to an anonymized dataset
of 6,328 patient records. Each patient record includes timestamped en-
tries for each time a patient was diagnosed with a Framingham symp-
tom. For example:

Patient#1:(27 Jul 2009, Ankle edema), (14 Aug 2009, Pleural effusion), ...
Patient#2:(17 May 2002, S3 gallop), (1 Feb 2003, Cardiomegaly), ...

In line with the use of Framingham symptoms for diagnosis, we as-
sume that once a symptom has been observed it applies perpetually.
We therefore filter the event sequences for each patient to select only
the first occurrence of a given symptom type. The filtered event se-
quences describe the flow for each patient through different disease
states. For example, a filtered event sequence symptom A → symp-
tom B indicates that the patient’s flow is no symptom→ symptom A
→ symptoms A and B. The data also has an outcome for each patient
(dead (0) or alive (1)).

Our analysis task, therefore, is to examine aggregated statistics for
the flows of many patients to find common disease states and transi-
tions between states. In addition, we wish to discover any correlations
between these paths and patient outcome.

3 RELATED WORK

3.1 Temporal Event Sequence Visualizations
Many researchers have explored visualization techniques for temporal
event sequences. In the early years, many systems focused on visual-
izing a single record [1, 2, 6, 8, 9, 16]. The most common approach
is to place the events on a horizontal timeline according to the time
that events occurred. Later, attention shifted towards visualizing mul-
tiple records in parallel. One popular technique is to stack instances

Fig. 3. Outflow visually encodes nodes in the Outflow graph using rect-
angles while edges are represented using two distinct visual marks: time
edges and link edges. Color is used to encode average outcome.

of single-record visualizations and to provide additional functionality
for searching [7, 21, 22, 23, 26], filtering [23], and grouping [5, 14].
However, these approaches do not aggregate nor provide any abstrac-
tion of multiple event sequences. Most recently, a technique called
LifeFlow [25] introduced a way to aggregate and provide an abstrac-
tion for multiple event sequences. However, LifeFlow’s aggregation
combines multiple event sequences into a tree, while Outflow’s aggre-
gation combines multiple event sequences into a graph.

3.2 State Diagram Visualizations
Our approach aggregates event sequences into an Outflow graph which
is analogous to a state diagram [4] or state transition graph. State di-
agrams are used in computer science and related fields to represent a
system of states and state changes. State diagrams are generally dis-
played as simple node-link diagrams where each state is depicted as
a node and transitions are drawn as links [3]. Many visualizations of
state diagrams have been developed [3, 17, 18, 20, 24]. These typically
focus on multivariate graphs where a number of attributes are associ-
ated with every node. Some support exploration of sequences of three
or more states. Variants on traditional state diagrams have also been
explored, such as Petri nets (also known as a place/transition net or
P/T net) [13] which offer a graphical notation for stepwise processes
that include choice, iteration, and concurrent execution. However, to
the best of our knowledge, these approaches do not display or allow
easy comparison of the transition time, which is one of Outflow’s de-
sign goals.

3.3 Flow & Parallel Coordinates Visualizations
Another group of visualizations called Sankey Diagrams [19] was de-
signed to visualize flow quantities in process systems. However, they
only focus on displaying the proportion of the flow that splits in differ-
ent ways, without temporal information. The visual display of Outflow
also looks similar to parallel coordinates [10], but the underlying data
types are different. Parallel coordinates are used for categorical data
while Outflow was designed for temporal event sequences.

4 DESCRIPTION OF THE VISUALIZATION

4.1 Data Aggregation
The first step in Outflow is data aggregation. We begin by selecting
an alignment point. For example, we can align a set of patient event
sequences around a state where all patients have the same three symp-
toms A, B and C and no other symptoms. After choosing an alignment
point, we construct an Outflow graph (Figure 2) using data from all
patients that satisfy the alignment point.



The Outflow graph is a state diagram represented using a directed
acyclic graph (DAG). The states are the unique combinations of symp-
toms that were observed in the data. Edges capture symptom transi-
tions. Each edge is annotated with the number of patients that make
the corresponding transition, the average time gap between the states,
and the average outcome of the patient group.

Therefore, the Outflow graph captures all event paths that led to the
alignment point and all event paths that occur after the alignment point.
Our prototype implementation lets users select a target patient from
the database and uses the target patient’s current state as the align-
ment point. This approach allows for the analysis of historical data
when considering the possible future progression of symptoms for the
selected target patient.

4.2 Visual Encoding
Based on the information contained in the Outflow graph, we have de-
signed a rich visual encoding that displays (a) the time gap for each
state change, (b) the cardinality of patients in each state and state tran-
sition, and (c) the average patient outcome for each state and transi-
tion. Drawing on prior work from FlowMap [15] and LifeFlow [25],
we developed the visual encoding shown in Figure 3.

Node (State): Each node is represented by a rectangle which has
its height proportional to the number of patients.

Layer: We slice the graph vertically into layers. Layer i contains all
Outflow graph nodes with i symptoms. The layers are sorted from left
to right, showing information from the past to the future. For example,
in Figure 1, the first layer (layer 0) contains only one node, which
represents patients that have no symptom. The next layer (layer 1) has
five nodes, one for each first-occurring symptom in the patient cohort.

Edge (Transition): Each edge is displayed using two visual marks:
a time edge and a link edge. Time edges are rectangles that whose
width is proportional to the average time gap of the transition and
height is proportional to the number of patients. Link edges connect
nodes and time edges to convey sequentiality.

End Node: Each patient’s path can stop in a different state. We use
a trapezoid followed by a circle to mark these points. The height of the
trapezoid is proportional to the number of patients whose path stops at
a given point.

Color-coding: Colors assigned to edges and end nodes are used to
encode the average outcome for the corresponding set of patients. The
color scales linearly from red to green with red representing the worst
and green representing the best outcomes.

4.3 Interactions
To allow interactive data exploration, we further designed Outflow to
support the following user interaction capabilities.

Panning & Zooming: Users can pan and zoom to uncover detailed
structure.

Filtering: Users can filter both nodes and edges based on the the
number of associated patients to remove small subgroups.

Symptom Selection: Users can select which symptom types are
used to construct the Outflow graph. This allows, for instance, for the
omission of symptoms that users deem uninteresting. For example,
a user can remove Nocturnal Cough if they deem it irrelevant to an
analysis and the visualization will be recomputed dynamically.

Brushing: Hovering the mouse over a node or an edge will high-
light all paths traveled by patients passing through the corresponding
point in the outflow graph (see Figure 4).

Tooltips: Hovering also triggers the display of tooltips which pro-
vide more information about individual nodes and edges. Tooltips
shows all symptoms associated with the corresponding node/edge, the
average outcome, and the total number of patients in the subgroup (see
Figure 4).

5 PRELIMINARY ANALYSIS

We have integrated the Outflow visualization technique into a proto-
type decision support system for CHF patients called PrognoSim. This
system uses a patient similarity-based approach to provide medical in-
telligence. PrognoSim is a web-based application written using Java’s

J2EE platform and Apache Tomcat as the application server environ-
ment. The PrognoSim user interface is rendered using HTML and
JavaScript. Dojo is used for traditional user interface widgets. The
Outflow visualization component is rendered on an HTML 5 canvas
via a scenegraph-based JavaScript visualization library named CVL.

We used Outflow within PrognoSim to view the evolution over time
for a cohort of CHF patients similar to a clinician’s current patient.
Our initial analysis illuminates a number of interesting findings and
highlights that various types of patients evolve differently. We share
two such evolution patterns as examples of the type of analysis that
can be performed using the Outflow technique.

Leading Indicators. In several scenarios, patient outcome is
strongly correlated with certain leading indicators. For example, con-
sider the patient cohort visualized in Figure 1. The strong red and
green colors assigned to the first layer of edges in the visualization
shows that the eventual outcome for patients in this cohort is strongly
correlated with the very first symptom to appear. Similarly, the strong
red and green colors assigned to the first layer of edges after the align-
ment point show that the next symptom to appear may be critical in
determining patient outcome.

Progressive Complications. In contrast to the prior example,
which showed strong outcome correlation with specific paths, the pa-
tient cohort in Figure 5 exhibits very different characteristics. At each
time step, the outcomes across the different edges are relatively equal.
However, the outcomes transition from green to red when moving left
to right across the visualization. This implies that for this group of
patients, no individual path is especially problematic historically. In-
stead, a general increase in co-occurring symptoms over time is the
primary risk factor.

6 CONCLUSIONS AND FUTURE WORK

We have introduced a novel visualization called Outflow that sum-
marizes temporal event data extracted from multiple patient medical
records to show aggregate disease evolution statistics for a cohort of
patients. We described our motivating problem in the study of conges-
tive heart failure and presented the main visual design concepts behind
our visualization. We also described a number of interactive features
in Outflow that allow more sophisticated analyses. Finally, we briefly
shared two example analysis results which highlight some of the capa-
bilities of our approach.

Due to these early promising results, we plan to continue work on
this topic in the future. We believe that there are many promising direc-
tions to explore including integration with forecasting/prediction algo-
rithms, the use of more sophisticated similarity measures, and deeper
evaluation studies with practitioners. Moreover, the flexibility of Out-
flow’s design means it can be used beyond our motivating problem
and can be useful for a range of medical (and non-medical) problems
which involve temporal event data.
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