Design Considerations for a Multi-Pr ojector Display Rendering Cluster

David Gotz

Departmentf ComputerScience
Universityof North Carolinaat ChapelHill

Abstract

High-resolutionmulti-projectordisplaysareoftenbuilt usingstan-
dardconsumetlectronics.Before designinga PC-clusterender

ing systento drive thesedisplays,a numberof issuesmustbe ad-
dressed. This paperprovides an overviev of theseissues. The
issuesaddressednclude the type of parallelrenderingalgorithm,
load balancing,network lateng, andnetwork overhead.The goal

of this paperis to provide a generalovervien of the designspace
andhighlightthe majortradeofs betweerdifferentdesigns.

1 Introduction

Over the last few years,computershave becomefasterand more
powerful by almostall measurementsComputerprocessospeeds
have increasedmemoryhasbecomecheaperandharddrive sizes
have grown. However, thereis one computercomponenthat has
remainedargely unchangedDisplays,suchasstandarccomputer
monitors,have remainedat a resolutionof aroundonemillion pix-
els.

To addresstheseconcerns,mary researchgroups have been
building multi-projector systemsthat combine readily available
consumerproductsinto single, unified displaysthat renderat far
higher resolutionthan traditional computermonitors[4, 12, 6, 5,
2, 3]. An importantpart of ary multi-projectordisplayis the un-
derlying renderingsystem. Somesystemauselarge supercomput-
erswhile othersystemausea distributedcomputercluster Dueto
thelarge monetarycostassociateavith a powerful supercomputer
cheapelPC-based¢omputerclustersarea moreaffordableoption.

This paperwill addressomeof the importantdesignconsider
ationsassociateavith PC-clusterenderingfor multi-projectordis-
play systemsThreeissueswill bediscussedn detail:

e Sorting in the Rendering Pipdine : Sortingis animpor
tantpartof ary parallelrenderingsystem.This papersuneys
varioussortingmethodsanddiscussesheir applicabilityto a
multi-projectordisplayclusterrenderingsystem.

e | oad Balancing : Loadbalancingalgorithmsaredesignedo
optimizethe performanceof parallelsystemsby distributing
work asevenly as possibleacrosseachnodein the system.
This paperdiscussestratgiesfor load balancingwithin the
renderingframework.

e Network Performance : We analyzethe impactof various
designdecisionson network performance. We utilize the
LogGP network modelto highlight specificnetwork perfor
manceconcerns.

Therestof this paperis organizedasfollows: Section2 provides
somebackgroundknowledge on multi-projectordisplays,sorting
classificationsload balancingalgorithms,andthe LogGP network
model.Section3 presentsrenderingalgorithmfor multi-projector
displaysthatis usedasa basisfor discussion.Section4 discusses
how sorting, load balancing,and network performanceapply to
clusterrenderingsystemsfor multi-projectordisplays. Section5

Projector 1 | Projector 2 | Projector 3

Projector 4 | Projector 5 | Projector 6

a)

Projector 1| Projector 2| Projector 3

Projector 4| Projector 5| Projector 6

b)

Projector b Projector 2

Projector 3

Figurel: Thethreedisplayclassesa) Abutted,b) RegularOverlap,
c¢) RoughOverlap.

providesa few designsuggestiondasedon the discussiorin Sec-
tion 4. Section6 addressethe issueof systemscalability andis
followedby a brief conclusion.

2 Background

2.1 Multi-Pr ojector Displays

As mentionedn theintroduction,anumberof researclyroupshave
investigatednulti-projectordisplays.All of thesedisplayscreatea
single high-resolutiondisplay by combininga collectionof lower
resolutionprojectors.Most of thesedisplaysfall into oneof three
broadclasses1) abutted 2) regular overlap, and3) roughoverlap

2.1.1 Abutted Displays

Abutted displays are the first class of multi-projector displays.
Abutted displaysrequirethatall projectorsin the displaybe care-
fully alignedsothatno pixels overlap. Abutted systemsarefairly
commonand are usedin everything from sports stadiumscore-
boardsto tradeshav exhibits. Someexamplesof atutteddisplays
arethe CAVE [2], Office of RealSoonNow” [1], andthe display
wall systemat LawrenceLivermoreNationalLaboratory{12]. Fig-
ure 1(a)depictsanakutteddisplay

2.1.2 Regular Overlap Displays

A seconcclassof multi-projectordisplaysrequiresprojectorsto be
carefully alignedsothatthereis somecontrolledoverlapbetween
projectors. The projectorsare requiredto have precisegeometric
relationshipsthat ensureregularity betweenoverlap regions. The
overlapregionsare usedto blendimageryacrossprojectorbound-
aries. This is doneto help hide both photometricand geometric
discontinuitiesattheboundariesPrincetons ScalableDisplayWall

[6] and Stanfords Interactve Mural [5] areboth examplesof reg-

ular overlap displays. Figure 1(b) depictsa display configuration
with regularoverlap.

2.1.3 Rough Overlap Displays

The third classof display systemss the mostcomplex becauset
allowsroughoverlapregionsbetweerprojectors.Theonly require-
mentis that projectorsactually overlap. This meansthat overlap
regionscanbe of arbitrary shapeandsize. UNC's PixelFlex sys-
temis an exampleof this type of display[3]. Figurel(c) shovs a
displaywith roughoverlapregions.

2.2 Sorting Classification

An inherentstepin parallelrenderingalgorithmsis sortingthe data
andassigningt to individual processorsThe sameis true for dis-
tributedrendering. Oncesorted,the datacanbe intelligently dis-
tributed to individual machinesfor processing. There are three
broad classesof parallel renderingalgorithms, each performing
the sort at a differentstagein the renderingpipeline. Thesethree
classes1) sort-first, 2) sort-middle and3) sort-last[8].

2.2.1 Sort-First

Sort-firstalgorithmsare designedo distribute world-spaceprimi-
tivesasearlyin thepipelineaspossible Beforestarting,regionsof
screerspaceareassignedo eachprocessorln addition,eachprim-
itive is assignedo a processolin somearbitrary manner Then,
during rendering,the processorgerform the minimal amountof
work that determinesthe screen-spacéocation of the primitive.
Typically, the algorithmwill computethe screen-spacprojection
of the primitive’s boundingbox. This operationis knowvn as pre-
transformation Oncethe pre-transformatiotis applied,the primi-
tive is distributedto the appropriatgprocessoor processors.

2.2.2 Sort-Middle

While sort-firstalgorithmsdistribute world-spaceprimitives, sort-
middle algorithmsare designedto distribute screen-spacegrimi-
tives.Regionsof screerspaceareassignedo individual processors
in the samemannerassort-firstalgorithms.However, oncerender
ing bagins, sort-middlealgorithmscomputetheactualscreen-space
coordinatesof eachprimitive. This contrastswith sort-firstalgo-
rithms which dont computethe actualprimitive coordinatesput
insteaduseboundingbox coordinatesOncethe screen-spaceoor
dinatesareknown, the primitivesaredistributedto the appropriate

processopr processorsin sort-middle the sortoccursat the natu-
ral split betweergeometryprocessingndrasterization.

2.2.3 Sort-Last

Thethird andfinal classof parallelrenderingalgorithmsis sort-last.
Unlike sort-first and sort-middle algorithms, sort-lastalgorithms
don't distribute primitivesatall. Instead pixelsaredistributedfol-

lowing therasterizatiorstage.For eachpixel, the computeddatais
sentto the appropriatgrocessopr processorsvheredepthvalues
arecomparedor visibility determination.

2.3 Load Balancing

Whendistributing computationatasksacrossmultiple processors,
load imbalanceshetweenprocessorgould be detrimentalto the
systems overall performance. The performancepenaltyis a re-
sultfrom inefficient allocationof the systems resourcesLoadbal-
ancingalgorithmsattemptto redistribute tasksacrossprocessorin
orderto achieve a morebalancedoaddistribution. This paperwill
utilize theloadbalancingmodelpresentedby Willebeeketal [13].
In this model,therearefour stagedn the load balancingprocess:
1) processoittoad evaluation 2) profitability determination3) task
migration, and4) taskselection

2.3.1 Processor Load Evaluation

Thefirst stagein thegeneraloadbalancingmodelis processoload
evaluation. In this stage,a load valueis estimatedfor eachnode.
The evaluationat eachnodeis madeindependently The values
thatresultfrom this stageareusedasinput in the subsequernibad
balancingstages.

2.3.2 Profitability Determination

Onceload evaluation hasbeenperformedon all nodes,the sys-
tem must perform load balancingprofitability determination. In
this stage the systemcalculatesan imbalancefactor. The imbal-
ancefactoris a function of the load evaluationscoresobtainedin
thefirst stage.This factoris a measureof the degreeof imbalance
in the systems currentstate. The imbalancefactoris thencom-
paredto the overheadassociatedvith correctingtheimbalance.If
the systemdetermineghat correctingthe load imbalancewill be
profitable load balancings initiated.

2.3.3 Task Migration

Onceload balancingis initiated, task migration occurs. Task mi-
grationstartsby determiningwvhich overworked nodescanhandoff
work andwhich underworked nodescantake on additionalwork.
This is accomplishedy analyzingthe resultsfrom the load eval-
uation stage. This stageconcludeswhen the systemnatifies the
sourcef the quantity of tasksto be migratedandthe destination
nodefor eachmigration.

2.3.4 Task Selection

Thefourth andfinal stagein load balancings taskselection.Once
asourcehasbeennotifiedhow muchwork it shouldhandoff andto
which nodeit shouldsendthetasks,the sourcemustdecidewhich
tasksto send. In this stage the sourceshouldintelligently decide
which tasksaremostappropriatefor the given destination Appro-
priatetasksareonesthatwouldrequiretheleastoverheado transfer
andtasksthatarecontextually appropriatdor thedestinatiomode.

2.4 The LogGP Network Model

Whendiscussinghow variousdesigndecisionsmpactnetwork per
formance,it is usefulto rely upona network modelsuchas the
LogGP modelproposedby Martin et al [7]. The LogGP model
attemptsto describea network’s impacton distributed systemsn
animplementation-neutrahanner The modeldefinesfive major
parametershatdescribeoverall network performance:

e Network Medium Latency, L : the time spentsendinga
messagédrom the sourceto the destination.L accountsonly
for thetime spentin transitthroughthe network. Time spent
in the sourceor destinations processors notincludedin L.

e Network Overhead, o : refersto the time spentby the pro-
cessorin sendingor receving a message.During the time
spenton o, the processocannotengagen ary otheractiity.

e Gap, g : the minimum time interval betweenconsecutie
messagéransmission®r receptionslf onesourcesendgre-
ceves)a messageat time ¢, the sourcemustwait until ¢ + g
beforesending(receving) a secondnessageThetime spent
waiting for g is thetime neededor a messagéo getthrough
the systems bandwidthbottleneck.

e Bulk Gap, G : a secondmeasureof gap. Most machines
have differentmechanismgor bulk messagé¢ransferthanfor
shortmessagesThe g gap parameteiappliesto shortmes-
sageswhile the G gapparameteappliesto bulk messages

refersto the time-perbyte spenttransmittingbulk messages.

Thisis thereciprocalof the bulk transferbandwidth.

e Number of Processors, P : the numberof processorén the
system.

L, o, g, andG aremeasuresf time. For example thetime spent
sendingasinglepacletfrom onemachingo anotheiis L+20. Both
the sourceprocessorand the recever processoiare utilized for o
secondgach.TheLogGPmodelassumethatthenetwork capacity
is boundedsuchthatat most[L/g] messagesanbein transitat
ary onetime. The LogGP model assumeghat if the maximum
network capacityis reachedmessagearestalleduntil roomonthe
network is availablefor themessage.

3 A Rendering Algorithm

Beforeattemptingo designadistributedrenderingcluster it is im-
portantto understantherenderingalgorithmwithouttheadditional
concernof clustercomputing. This paperpresentone particular
algorithm designedfor multi-projectordisplayswith rough over
lap. This sectionignoresall issueselatedto the distributednature
of clustercomputing.

Therearetwo mainstagesn the renderingalgorithm. The first
stagds known asGeometridReistration andis pre-computedThe
secondstageis theRendering.oopandoccursin real-time.

3.1 Geometric Registration

Before the renderingprocessbegins, a numberof parametershat
describethe geometricpropertiesof the display must be deter
mined. Oncemeasuredthe parametersre usedby the rendering
algorithmto blendthe projectorstogetheito form aunifieddisplay
The first goal of the geometricregistrationprocesss to deter
mine eachprojectors relationshipto a global coordinatesystem.
This is doneby computinga 3 x 3 matrix for eachprojectorthat
mapseachindependenpixel spacecoordinatesysteminto a single
unified coordinatesystem.We referto this matrix asa collineation

matrix. A collineationmatrixmapsonetwo-dimensionaspacento
anothervia an affine transformation. In orderto incorporatethe
collineationmatrix into a standarccomputergraphicspipeline,the
matrix is expandedto a4 x 4 representationThis techniquewas
usedby Raskaf10] to rendercorrectedmageryfor roughlyaligned
projectors.

The secondgoal of the geometricregistrationprocessis over
lap estimation. Overlap regions can be computedby using the
collineationmatricesdeterminedn thefirst partof the registration
process.We would thenlike to attenuatepixel intensity valuesin
the overlapregionsto hide the seams.A two-dimensionalookup
tablecanbebuilt for eachprojectorthat storesa perpixel attenua-
tion factor Thistableis calledanalphamap To achieve effective
blendingin the overlapregions,the alphamapis calculatedsothat
theattenuatiorfactorsof overlappingpixelssumto one.

3.2 Rendering Loop

In the renderingloop, the imagesfor eachprojectorarerendered
independentlyThe4 x 4 collineationmatrix correspondingo the

appropriateprojectoris appendedo the front of the matrix stack
usedin therenderingoop. Therenderingpipelinethenproceedss

normal.At theendof the pipeline,thealphamaskgeneratediuring

the overlapestimationstageis appliedto thefinal imagery When

theseimagesare projectedonto the display surface,the resultis a

unified high-resolutiordisplaybuilt from multiple roughly aligned
projectors.

4 Major Cluster Design Factors

When designinga renderingcluster that usesthe algorithm pre-
sentedn Section3, therearea numberof issuesthat mustbe ex-

plored. Thesedesignfactorsincludethe locationof sortingin the
renderingpipeline,assigningolesto individualmachinesloadbal-

ancing,andthe impactof designdecisionson network and com-
municationperformance.In the following sections.eachof these
issueswill bediscussedn detail.

4.1 Sorting in the Rendering Pipeline

Section2.2 presentedhreetypesof sortingalgorithms.In this sec-
tion, we take a closerlook at all threealgorithmsand how they

would apply to clusterrenderingfor multi-projectordisplays. At

first glance,both sort-firstand sort-middleappearto be viable op-
tions. Conversely sort-lastalgorithmsappearto beiill suitedfor

high-resolutionsystems. This is becausesort-lastsystemsmust
transmitpixel dataacrosghe network andmulti-projectordisplays
typically have avery large numberof pixels. Thisis especiallytrue
asthedisplaysystemscalesipwardstowardshigherandhigherres-
olution.

Oneimportantfactorwhenchoosinga sortingalgorithmis the
availability of consumetevel systemsThelow pricefor fully inte-
gratedhigh-paveredgraphicssystemsnakessort-firstanattractive
option. Implementingsort-middlewith theseconsumermroducts
couldprove difficult.

However, it is still usefulto explore the computationaktostsof
eachapproacho determinewhich optionis mostapplicable. The
following sectiong4.1.1,4.1.2,and4.1.3)build uponthecostcom-
parisonpresentedby Molnaretal [8].

4.1.1 The Cost of Sort-First

Sort-firstalgorithmsincur an additionalcostdue to the overhead
of the pre-transformatiorstage. This costis proportionalto the
numberof primitivesbeingrenderedThenext overheactostis due
to budketization Bucketizationrefersto the procesf determining

;xk
N
) A

Figure2: (a) Both the greenand orangetrianglesfall in a single
region. The overlapfactoris 1. (b) The greentrianglefalls in one
region while the orangetrianglefalls in two regions. The overlap
factoris 1.5. (c) Both trianglesfall in two regions. The overlap
factoris 2.

to which processoeachprimitive shouldbeforwarded.The costof
bucketizationis proportionalto both the numberof raw primitives
andthe overlap factor. The overlap factoris a measureof how
mary regionsare concernedaboutan averageprimitive. Figure2
illustratesthe overlapfactorconcept.

The costof bucketizationis relatedto the overlapfactorbecause
primitivesfalling within overlappingregionsmustbe redistributed
to morethanone processaor It is importantto note herethat un-
like the Molnar et al analysis,the overlap factor for both regular
androughoverlappingdisplaysmay not approactone[8]. Thisis
becausehe screerregionsmayactuallyoverlap.In Molnar’s anal-
ysis, the regionswereassumedo have akuttedrelationships.The
overlapfactoris thereforea significantfactorin our analysis.

Following bucketization, the primitives must be distributed
acrosghe network. This costis proportionalto the numberof raw
primitives,theoverlapfactor andthefractionof raw primitivesthat
mustberedistributedbetweerprocessorsThis fractionis very im-
portantin decidingwhich algorithmto use. To helpreducethere-
distribution fraction, the systemwould be ableto take advantageof
frame-to-framecoherenceThecoherenceomesfrom thefactthat
a raw primitive assignedo one processois likely to be assigned
to the sameprocessom thenext frame. Exploiting frame-to-frame
coherenceandrive down theredistribution fraction, greatlyreduc-
ing the costof redistritution. Oncethe primitiveshave beenredis-
tributed,eachprocessohandlesdts assignedvorkload.

4.1.2 The Cost of Sort-Middle

Sort-middlealgorithmsdon't performary pre-transformwork. In-
steadhey calculateherealscreerspacecoordinategor eachprim-
itive. This work is donein sort-firstalgorithmsaswell. Thediffer-
enceis thatin sort-firstalgorithms,it takes placeafter redistritu-
tion. Following the calculationof screenspacecoordinatesmary
sort-middlealgorithmsperformtessellatiorof raw primitivesinto
display primitives. The ratio of display primitivesto raw primi-
tivesis known asthetessellatiorratio, 7. Sort-middlealgorithms
performboth bucketizationandredistritution of displayprimitives

insteadof raw primitives. As aresult,the costsof thesetwo stages
of renderingareT’ timesgreatethanfor sort-first. Following redis-
tribution, eachprocessohandlests assignedvorkload.

4.1.3 Cost Comparison

The costdifferencedbetweensort-firstand sort-middlealgorithms
occurin threestagesof the rendingpipeline. The first difference
occursin the pre-transformatiorstage. Sort-firstincurs a penalty
proportionato thenumberof raw primitiveswhile sort-middledoes
notneedto performthis stepandincursno costatall. Notethatpre-
transformatiorcostsareincurredonly on the processoperforming
the calculations.This meansgthat asthe systemscalesup to more
projectorsand higherresolution,therewill not be ary increasen
network utilization dueto the pre-transformatiorstage. No addi-
tional bandwidthwill be needed.

The othertwo differencesare dueto the tessellatiorratio. For
sort-first,tessellatioris not performeduntil afterprimitive distribu-
tion. For sort-middle the costof bothbucketizationandredistritu-
tion increasegroportionallyto thetessellationatio, T'. Bucketiza-
tion costsareassociategurelywith computationwhile redistritu-
tion costsimpactboth computatiorandcommunication While the
addedcost of bucketizationare similar to the pre-transformation
costsof sort-firstalgorithms,the additionalcommunicatiomeeds
for sort-middleredistribution will translateinto moretraffic on the
network. Theincreasedraffic will be short-messagtansfersof
primitives. As discussedn Section4.4,this would placeincreased
pressuren the network’s shortmessageaptime, g.

When designinga PC clusterfor interactive rendering,all of
thesefactorsmustbe analyzed.If the pre-transformatiorostsare
lessthanthe addedcostof tessellationthensort-firstis the more
appropriateoption. Otherwise sort-middlemaybe moreappropri-
ate. Recallthat when comparingthe costsof the two options, it
isimportantto differentiatebetweercomputatiorcostandnetwork
cost.

4.2 Role Assignment

Renderingalgorithmscall for the completionof a numberof spe-
cializedtasks. As a result, a logical designdecisionwould be to
assignsomespecificrolesto eachPCin a cluster OnePC should
beassignedo eachprojector Additional PCscouldbe usedto fur-
ther divide the work load, but would requireadditionaldatato be
transmittedacrosghe network atthe endof the renderingpipeline.

In addition,oneor morePCsshouldbein chage of distributing
primitivesacrossthe system. Therecould be onemastermachine
in the clusterin chage of synchronizatiorfor the other PCsand
othertasksthatmayrequirea singlepoint of control. However, the
designmust be carefulwhen assigningrolesto the masterPC to
avoid bottleneckslf atall possible algorithmsshouldbe designed
to avoid acentralcontrolpoint. Thisis particularlyimportantasthe
scaleof the systemincreases.

Machinesmay performone,mary, or all of therolesin the sys-
tem, but it is importantto determinewhat the roles are and how
theclusterresourceshouldbeallocated Figure3 depictsatypical
arrangement.

4.3 Load Balancing

Regardlessof haw effectively resourcesare allocatedby role as-
signmentthe load on eachmachineduring run time will fluctuate
andcreateimbalanceslmbalancesn load might negatively affect
the clustersperformance.Section2.3 presentedh four phaseload
balancingmodel. This sectionwill explore how the modelcanbe
appliedto the distributedrenderingpipeline.

IS
j
—
L o
— o o
¢ ¢
IS

— 1

Figure3: Thisfigureshavs atypical clusterarrangementTheblue
machinerepresentghe applicationhostand control PC. The red
machinesare the individual PCsassignedo eachprojector The
projectorsarerepresentech green.Thethick blackline represents
ahigh speedpoint-to-pointnetwork.

4.3.1 The Load Balancing Task

The genericload balancingmodelredistributestasksbetweernpro-
cessorgo balancethe computationaload. Before analyzingthe
load balancingmodel ary further, it is importantto discusswhat
ataskis in the contet of a distributedrenderingcluster Section
2.2 statedthat both sort-firstand sort-middleassignedegions of
screen-spact eachprocessaor Theseregionswerefixed, andfor
multi-projectordisplaysystemsthey could correspondetb there-
gion coveredby the processos projector Becauseheregionsas-
signedto eachprocessoiare fixed, the load on eachprocessoiis
dependenbn the geometriccompleity of the screen-spaceegion
assignedo it.

To facilitate load balancing,it is desirableto allow the regions
associatedvith eachprocessoto changewith time. However, this
couldresultin pixel datatargetedfor oneprojectorbeingcomputed
ataprocessoboundto a differentprojector To solve this problem,
asmallnumberof pixelswould thenneedto betransmittecbverthe
network attheendof the pipeline.

With this new approachthe systemcandivide screenspaceup
into regionssmallerthantheregionsassociatedvith ary singlepro-
jector. Thesystencouldstartwith eachof thesmallerregionsasso-
ciatedwith theprocessothatwill projectthatareaof screerspace.
The systemcould thenbe capableof redistrituting thesesmall re-
gionsof screenspaceto othernodesin the systemto accomplish
load balancing.The balancingcomesat the additionalcostof for-
wardingthe final pixel dataacrossthe network to the appropriate
node.Becauseulk datatransfermechanismsouldbeusedto dis-
tribute the pixel data,the additionalcostwould likely rely heavily
on the bulk messagegap, G. The balancingmight also causea
slightincreasan primitive distribution by disruptingthe frame-to-
frame coherenceexploited by the sorting algorithm. The cost of
thisincreasevould rely on theshortmessage@ap, g.

Using this approachthe taskthatis beingdistributed for load
balancingis thework associateavith a smallareaof screerspace.
The PrincetonScalableDisplay Wall usesa similar methodfor re-
distributing work in arenderingcluster[11].

4.3.2 Folding Load Balancing
Pipeline

Into The Rendering

Giventhe computationatostsof load balancing,t appearsat first
glancethatit mightnotbeappropriatdor agraphicsrenderingsys-
temdesignedor real-timeframerates.However, it is oftenpossible
to take adwantageof frame-to-framecoherencen orderto imple-
menta low costload balancingalgorithmthatis fully compatible
with therenderingalgorithmoutlinedin previoussections.

There are two main sourcesof computationin the rendering
pipeline. This first sourceis the geometryprocessing The second
sourcels rasterization A roughmeasuref load evaluationfor the
geometrystagds thenumberof primitivesatanode.A roughmea-
sureof rasterizatiodoadis the numberof primitivesmultiplied by
the averageamountof screen-spacareafor a primitive. Calcula-
tion of this load measureequiresthatthe entirerenderingpipeline
finishto completion.However, we would lik e to have theload esti-
mationbeforewe startprocessingprimitivesin orderto balancethe
load. Luckily, frame-to-framecoherencecan be exploited at this
stage.Load evaluationcanbe performedat the endof the pipeline
and the resultscan be usedto balancethe next passthroughthe
pipeline.

The profitability determinatiorstagecanbeinsertedat the very
startof the pipeline. Beforeinitiating the renderingprocessthe
systenshouldcompareheloadevaluationswith thecostof balanc-
ing. Thecostis a measuremertf the time requiredto redistrikute
tasksaswell asthe network resourcesieedecy theredistritution.
If load balancingis not beneficial,the systemshouldcontinueon
asnormal. If load balancingis beneficial the taskmigrationstage
begins.

During task migration, nodeswith the highestload shouldbe
notifiedthatthey areconsideredourcesor load balancing.How-
ever, the sourceshouldnotjustblindly sendtasksto underloaded
nodes.Doingthiswould createafragmentedegion of screerspace
to beassignedo eachnode.Becausef thesubstantiabverlapfac-
tor, this would createa large amountof replicatedwork, increasing
thetotalamountof computatiorrequiredby the system.

A moresophisticatedaskmigrationstrateyy would take adwan-
tageof the spatialrelationshipsetweenthe projectorsassociated
with eachnode. If a sourceprocessoiis overloaded,it will push
taskstowardsneighborghatarelessloadedthanthe source. These
neighborwill performsimilaroperation®nthenext iteration. This
strat@y slows down the responsienessof the load balancingop-
eration, but greatly reducesfragmentationin screenspace. This
technigueof context sensitivdoad balancingis shavn in Figure4.
It is similar to the sendeiinitiated diffusion techniqueoutlined by
Willebeek-LeMairandReeves[13].

Oncethesourcesinddestinationsredeterminedthefourthand
final stageof load balancingtakes place. During this stage,indi-
vidual tasksare selectedfor redistrilution. In the contet sensi-
tive migrationstratgy outlinedabore, therearea numberof small
screen-spaceegionsthatfall onthe borderbetweerthe sourceand
destinatiomodes.Duringtaskselectionthebestregionfor redistri-
bution mustbe selectedIn the context of the renderingalgorithms
discussedn this paper the evaluationshouldbe basedon the load
disparitypresentn the systemtheload evaluationin eachregion,
andtheamountof overlappresenin eachregion.

After load balancinghastaken place,the renderingsystemcon-
tinuesexecutingthe standardsort-firstor sort-middlepipeline. At
the end of the pipeline, pixels that were computedaway from the
default nodemustbe transmittedacrossthe network. The costof
the pixel redistritution is very high and mustbe incorporatednto
the profitability determinationlIf alarge numberof pixelsmustbe
transmittecattheendof thepipeline,thesystenmayachie/e better
performancen anunbalancedtate.

Load A=10 Load B=8 Load A=10 oad B=8

Load A=8 Load B=8 Load A=8 Load B=10

Load A=8

Load B=8

Figure4: Theimageto theleft depictsthespatialfragmentatiorthat
occurswith asimpleloadbalancingalgorithm. Theimageto theleft
shaws thata context sensitve algorithmcanreducefragmentation
attheaddedcostof slower balancingperformance.

Profitability Determination
Task Migration
Task Selection

Primitive Distribution
Primitive Distribution
R Iooo R R||R|eoe| R|R

——
Pixel Redistribution Pixel Redistri@

| Load Evaluation | | Load Evaluation |

Profitability Determination
Task Migration
Task Selection

Figure5: Theleft figure shavs a sort-firstpipeline. Theright fig-
ure depictsa sort-middlepipeline. In this figure, G representshe
graphicsprocessingtage.Gpr representshe pre-transformation
stageneededn sort-firstpipelines. R representshe rasterization
stage.

4.3.3 Impact of Sorting on Load Balancing

The is an importantrelationshipbetweenload balancingand the
sortingalgorithmthatdependsiponwherein the pipelineeachop-
erationtakesplace.As shavn in Figure5, loadevaluationoccursat
the very endof the pipeline. The remainingstagesof load balanc-
ing occurat the startof the pipeline. Recallthat astaskselection
occurs,screen-spaceegionshave beenreassignedo differentma-
chinesto balancetheload.

However, no geometrydatagetsreassignedintil the primitive
distribution stage.This creates slightdelayin the effectivenesof
theloadbalancingoperation.Thedelayoccursbetweertaskselec-
tion andprimitivedistribution. As Figure5 shaws, thelengthof this
delaydependn the sortingalgorithm. Sort-firstalgorithmsmust
wait for thepre-transformatiostageto completewhile sort-middle
algorithmsmustwait for the entire geometryprocessingstageto
complete Becausesort-firstalgorithmsdistribute primitivesearlier
in the pipeline,the benefitof loadbalancings felt earlier

4.4 Communication and Network Topology

Whendesigninga PC renderingcluster therearea numberof op-
tions concerningnetwork infrastructureand the overall topology
Optionsfor theinfrastructure@ncludeMyranet,EthernetandGiga-
bit Ethernet. Network protocolsneedto be chosenfor communi-
cation. Theseprotocolsmay or may not provide reliable delivery
andor quality of serviceguaranteesNetwork topologyis a critical
issueaswell. Shouldthe network be a broadcassystem?Should
it provide point-to-pointcommunicationWVhat parametersf the
network aremostcritical to the clusters performance?

4.4.1 Point-to-P oint Network

Due to the natureof both task and pixel redistribution, it seems
that a point-to-pointnetwork would be mostappropriate. This is
becauséoth tasksand pixels are sentfrom a specificsourceto a
specificdestination.Most communicatiorwill thereforebein the
form of point-to-pointmessages.

However, incorporatingbroadcastapabilitiesmight prove use-
ful in synchronizingall of the nodesin the clusterat critical points
in the renderingpipeline. Reliabledelivery also seemsmportant
for maintaininga high performancdevel. Lost or missing data
would likely causeproblemsandslowr down therenderingprocess.

4.4.2 Applying the LogGP Model to a Rendering Cluster

To geta betterunderstandin@f the network requirementseeded
for aclusterrenderingsystemwe canusethe LogGPmodelof dis-
tributed network performancedescribedn Section2.4. However,
beforewe canutilize the model, it is importantto analyzetheren-
deringsystems properties.

A PC renderingcluster capableof interactve frame rateswill
be a highly synchronizedystemsinceinteractive applicationsare
oftenrequirecdto rendemultiple framespersecondln addition,the
renderingsystemn this papemwill requiremultiple synchronization
pointsperframe. For example,the systemmustsynchronizeafter
redistrituting primitives, after redistributing load balancingtasks,
andwhenfinishedrenderingthefinal pixel data.

This high degreeof synchronizatiorwill weigh heavily on the
network design. Experimentsperformedat the University of Cal-
ifornia at Berkeley have shawvn that synchronizedapplicationsare
likely to be dependenbn total roundtrip times[7]. This implies
thatarenderingclusterwill besensitve to L, the network medium
lateng. Thereforeahigh-speecdhetwork will becritical to theclus-
ter's performance.

For both sort-first and sort-middle systems,the redistrikution
stageof the pipelinewill likely useshortmessageto performthe
redistritution of tasks. This is becausehe itemsbeingdistributed
areindividual primitives. This implies thatthe shortmessag@ap
time, g, isimportant.Similarly, thebulk transfergap,G, will beim-
portantat the endof the pipelinebecauséulk transferswill likely
be usedto transferraw pixel dataacrossthe network. Pixel data
will needto be sentbackto the appropriatehostsafter they have
beencomputedelsavhereto achieve load balancing. This implies
that the requiredbandwidthwill be proportionalto the amountof
dataredistritution (due to both both sorting and load balancing)
expectedirom therenderingclusterduringtypical operation.

As the display supportedby the clusterscalesup to higherand
higherresolutionsthe bulk transfergap, G, will becomemoreim-
portantasthe numberof raw pixels redistritutedover the network
increases.The numberof pixels to be redistrituted increasedor
bothregularandroughoverlappingdisplaysbecauséigherresolu-
tion displaysusemore projectors. This resultsin a larger number
of pixelsin overlapregions.

The analysisabore might imply that L, g, and G arethe most
importantfactorsin network design. Indeed,the network should

be designedo optimize all threefactors. However, the Berkeley
studyshavedthatabove all else,applicationsaremostsensitve to
network overheadyp. Evenlightly communicatingapplicationswill
exhibit afactorof 3-5 slowdownn on systemaith network overhead
valuestypical of currentLAN communicatiorstacks[7]. Highly
communicatingapplicationsuchastherenderingclusterwill shav
farworseeffects.

In orderto limit network overheadp, asmuchaspossible the
renderingclustershouldbe designedvith a messagingystemthat
allows applicationsto bypassthe LAN communicatiornstack. For
example,MPI, or MessagePassinginterface, allows applications
to sendmessageacrossa local areanetwork without accruingthe
overheadof the communicatiorstack[9].

Improvementsto both gap, g, and network overhead,o, will
provide improvementsto clusterperformance The Berkeley stud-
ies shaved that almostall applicationsshav a linear dependence
on both parameters.This implies that reductionof network over
headandgapwill resultin asimilarimprovementin overall cluster
performance.The samestudiesshaved thatimprovementsdueto
lower bulk transfergap, G, andnetwork mediumlateng, L, were
moredifficult to quantify They shavedthatimprovementsfromre-
ducedG andL aremorecloselyrelatedto theapplications design.

5 Cluster Design Suggestions

After exploring the clusterdesignfactorspresentedn Section4, a

few guidelinesbecomeclearthatshouldbe followed whendesign-
ing a distributed PC renderclusterfor roughly aligned projector
displays. First, a hybrid renderingapproactshouldbe used. The
hybrid algorithmshouldcombinesort-firstor sort-middlefor prim-

itive redistritution with pixel redistritution at the end of the ren-
deringpipeline. The sort-firstor sort-middlesegmentof the algo-
rithm facilitatesdistribution of raw or displayprimitivesto the host
responsiblefor renderingthe appropriateregion of screenspace.
The pixel redistrilution segmentof the algorithmfacilitatesredis-
tribution of the pixel databackto the hostthatis attachedo the
appropriatgorojectorafterload balancing.Choosingsort-firstover

sort-middlewill make integrating standardgraphicshardware an

easiemprocessFigures illustratesthetwo distribution stagesn the
hybrid pipeline.

Second]oadbalancingshouldbeimplementedf typical usesof
theclusterwill creategrosslyunesenworkloadssuchasgeometry-
boundbottlenecks Although frame-to-framecoherenceanbe ex-
ploited to improve load balancing,the costassociatedvith trans-
ferring tasksandpixelsis still very high. Careshouldbetakenthat
the benefitsof load balancingoutweighthe costandthatit actually
improvesperformance.

The third guidelineis that when designingthe communication
portionsof the cluster messageassinglibraries that bypassthe
typical LAN communicatiorstackshouldbe usedto minimizethe
costof network overhead.Likewise, networks shouldbe designed
to minimize bothgapvalues.Thewill allow primitive andpixel re-
distributionto performathigherrates.lt is alsoimportantto recog-
nizethatthehighdegreeof synchronizationnherentin loadbalanc-
ing andtherenderingpipelinearelikely to make network lateny a
very importantparameteto systemperformance.

6 System Scalability

Oneof thelargestbenefitso usinga PCclusterto renderfor multi-
projectordisplaysis therelatively cheapcostof increasinghe sys-
tem’s scale.If therenderingwereperformedon a large supercom-
puter scalingup the systemwould requirea new machinewith a
large financial cost. Using a PC clusterto renderthe imageryal-
lows the systenmto scaleup by addinganadditionalPCto theclus-

ter. This allows new projectorsto be addedto the display at low
cost.However, it is importantto understandhow scalingthesystem
affectsthe systems performance.

Theareaimpactedmostheavily by anincreasen the numberof
hostsis the network. An increasen hoststranslatesnto increased
network traffic. More taskswill bedistributedandmorepixel data
will betransferredat the end of the pipeline. This increasedraf-
fic will increasebandwidthusage. The other network parameters
(L, G, g, ando) will notbedirectly affected. It is importantto in-
surethat the underlyingcommunicatiormediumsuppliesenough
bandwidthfor the scaleof the system.

The load balancingalgorithmwill also be affected. Processor
load evaluationoccursindependentlat eachhostandremainsthe
same.Lik ewise, taskselectionis independento scaleandremains
the same.This is becauseaskselectionin the renderclustercon-
text dependsonly on spatialneighbors. However, load balancing
profitability determinationand task migration becomemore com-
plicatedasthe numberof inputsinto the decisionsncreases.

Therenderingalgorithmshouldremainrelatively immuneto the
scaleof therenderingsystem.The majorparameterso therender
ing algorithm’s performanceelateto thegeometnjeingrendered.
This includesthe numberof primitives and the tessellatiorratio.
However, the one areathat is affected by additionalhostsis the
overlapfactor As morehostsareaddedto the systemthe screen-
spaceegionshecomesmallerandsmallerwith respecto thegeom-
etry if all otherfactorssuchasgeometryandfield-of-view remain
constant. This meansthat the effective size of primitivesin pixel
spacewill belargerandthey will be morelikely to fall on overlap
regions. Increasinghe overlapfactorresultsin duplicationof work
at variousnodes. This trendtowardsan increasingoverlap factor
canbe partially overcomeby meiging all screen-spacegionsona
singlehostinto oneregion. Thiswill reduceoverlapfactorswithin
eachhostto the minimum possible. However, the overlap factor
will still increaseasthe scaleof the systemincreasesalbeit at a
slowerrate.

7 Conclusion

Designingarenderingclusterthat providesinteractie graphicsfor
multi-projectordisplaysis a complicatedask. Therearea number
of designdecisionghatmustbe madewhenbuilding suchacluster
This paperhaspresentea few of theseissuesand exploredmary
of theoptionsfacedduringthe designof arenderingcluster

Onemajorissueaddresseds the sorting processeededwithin
therenderingpipeline. Dependingon thefinal clusterarchitecture,
eithersort-firstor sort-middlealgorithmsmay be appropriate An-
othermajorissueis load balancing.This paperdiscussea context
sensitve loadbalancingapproactandprovidedanoverviev onhow
thetechniquecouldbeusedin conjunctiorwith aparallelrendering
algorithmsuchassort-firstor sort-middle.Thelastmajorissuecov-
eredin this papemwasnetwork performanceThis papemrovideda
descriptionof how the redistritution requirementsssociatedvith
bothsortingandloadbalancingmpactnetwork performance.

The renderingalgorithm’s sorting processjoad balancing,and
network communicatiorareall importantfactorsthatweigh heav-
ily on the systems overall performance. When designinga PC-
basedenderingcluster they mustall beexploredduringthedesign
process.

References
[1] GaryBishopandGreg Welch. Working in the Office of the

“Real SoonNow”. |EEE ComputerGraphicsand Applica-
tions, 20(4):76—782000.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]
[10]

[11]

[12]

[13]

CarolinaCruz-Neira,Daniel J. Sandin,and ThomasA. De-
Fanti. Surround-ScreeRrojection-BaseWirtual Reality: The
DesignandImplementatiorof the CAVE. ComputerGraph-
ics, 27(AnnualConferenceSeries): 135-142,993.

David Gotz. The Office of the FutureDisplayWall System.
UNC-CH Comp238ClassReport.

Mark Hereld, lvan R. Judson,and Rick L. Stevens. In-
troductionto Building Projection-basediled Display Sys-
tems. IEEE ComputerGraphicsand Applications 20(4):22—
28,2000.

Greg Humphrers and Pat Hanrahan. A Distributed Graph-
ics System for Large Tiled Displays. In IEEE M-
sualization 1999 San Fransisco, October 1999. cite-
seemj.nec.com/241717.html.

Kai Li, Han Chen, Yugun Chen, DouglasW. Clark, Perry
Cook, StelinosDamianakis,Geog Essl, Adam Finkelstein,
ThomasFunkhouserTimothy Housel,Allison Klein, Zhiyan
Liu, Emil Praun RudrajitSamantaBen Shedd JaswindePal
Singh,Geoge Tzanetakisand JiannarZheng. Building and
Using A ScalableDisplay Wall System. IEEE Computer
Graphicsand Applications 20(4):29-372000.

Richard P. Martin, Amin M. Vahdat,David E. Culler, and
ThomasE. Anderson. Effects of CommunicationLatengy,
OverheadandBandwidthin a ClusterArchitecture. In Pro-
ceedingsof the 24th Annual International Symposiumon
ComputerArchitecture, Junel997.

Steven Molnar, Michael Cox, David Ellsworth, and Henry
Fuchs. A SortingClassificationof ParallelRendering.IEEE
ComputerGraphicsand Applications 14(4):23-32,1994.

MPI. The MPI-2.0 Standard http://www.mpi-forum.og/.

RameshRaskar Immersive PlanarDisplay using Roughly
Aligned Projectors.In IEEE VR 2000 New Brunswich,NJ,
USA, March2000.

Rudrajit Samanta, Jiannan Zheng, Thomas Funkhouser
Kai Li, and Jaswinder Pal Singh. Load Balancing
for Multi-Projector Rendering Systems. In ACM SIG-
GRAPH/EuographicsWorkshopon GraphicsHardware, Au-
gust1999.

DanielR. Schikore, RichardA. Fischer RandallFrank,Ross
Gaunt,JohnHobson,and Brad Whitlock. High-Resolution
Multiprojector Display Walls. IEEE ComputerGraphicsand
Applications 20(4):38—442000.

Marc H. Willebeek-LeMairand Anthory P. Reeves. Strate-
giesfor DynamicLoadBalancingon Highly ParallelComput-
ers. |IEEE Transactionson Parallel and Distributed Systems
4(9):979-9931993.

