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ABSTRACT
Streaming of linear media objects, such as audio and video, has
become ubiquitous on today’s Internet. Large groups of users regu-
larly tune in to a wide variety of online programming, including ra-
dio shows, sports events, and news coverage. However, non-linear
media objects, such as large 3D computer graphics models and vi-
sualization databases, have proven more difficult to stream due to
their interactive nature. This paper presents Channel Set Adapta-
tion (CSA), a framework that allows for the efficient streaming of
non-linear datasets to large user groups. CSA allows individual
clients to request custom data flows for interactive applications us-
ing standard broadcast or multicast join and leave operations. CSA
scales to support very large user groups while continuing to pro-
vide interactive data access to independently operating clients. We
discuss a motivating sample application for digital museums and
present results from an experimental evaluation of CSA’s perfor-
mance.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Multimedia databases;
I.3.2 [Computer Graphics]: Graphics Systems—Distributed / net-
work graphics

General Terms
Experimentation, Measurement, Performance

Keywords
Multimedia, Non-Linear, Scalable, Streaming

1. INTRODUCTION
Digital media streaming, made possible by the proliferation of

both digital media and broadband data networking, has become
nearly ubiquitous. For example, radio program streams are avail-
able online from a variety of sources ranging from major market
music broadcasts to small college radio stations.

To date, media streaming has largely been limited to linear me-
dia. Linear media objects, such as audio and video, consist of data
arranged in a fixed and linear ordering. For example, video consists
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Figure 1: Channel Set Adaptation (CSA) enables efficient
streaming of non-linear media to large groups of independently
operating users. We partition the media object into semanti-
cally meaningful clusters, labeled ci. These clusters are then
mapped to a large set of broadcast or multicast channels, la-
beled gi. Clients compose custom data flows that match their
local application requirements without ever contacting the cen-
tral server by managing their Active Channel Set through scal-
able subscription operations.

of a linear sequence of frames arranged along the time dimension.
Every user that accesses a linear media stream receives the same
flow of information.

The dominance of linear media in the context of online streaming
matches the long time dominance of linearity in more traditional
media, including books, film, and television. The linear nature of
theater, for example, is what allows entire audiences to be satisfied
by observing a common stage performance.

However, recent advances in computing and interactive technol-
ogy have led to the growing importance of non-linear media. Non-
linear media objects, such as video games, interactive visualiza-
tions, and virtual environments, provide individual data orderings
to each user in response to their local requirements and interactions.

Linear and non-linear media are fundamentally different in the
experience they provide to consumers. Non-linear media experi-
ences require unique presentations to each participating user. For
example, every user playing a video game is presented with a differ-
ent flow of information in response to their individual interactions.

The differences between linear and non-linear media pose new
challenges to media streaming techniques. In particular, the need
to deliver a custom data flow to each member of a large group of in-
dependent users cannot be solved using traditional media streaming
which typically relies on common interests across a receiver popu-
lation for an entire session. In contrast, our approach is to exploit



the transient commonality of interests across subsets of users to
provide scalable delivery of individualized data flows to each user.

In this paper, we propose Channel Set Adaptation (CSA), a novel
approach that provides scalable and adaptive streaming for non-
linear media. CSA allows for the distribution of non-linear media
datasets to large groups of independent users. Each user is able
to independently express data requirements and preferences. In re-
sponse, custom data flows designed to match those individual needs
are delivered to each client in a way that scales well to support very
large user groups.

1.1 Main Results
We present a solution for scalable and adaptive streaming of non-

linear media. Our work is motivated by our driving design philoso-
phy for a “simple server” streaming solution that scales to support
large groups of users by pushing all per-client work away from the
server and toward individual clients. We describe the three pri-
mary components of our work: a data representation abstraction,
a channel-based media communication model, and a client-driven
adaptation algorithm.

Taken together, these components form Channel Set Adaptation
(CSA), a framework for scalable and adaptive streaming of non-
linear media. We have implemented an experimental prototype that
uses CSA for streaming a large image-based rendering dataset to a
group of independently operating clients. We include results from
an experimental evaluation of our prototype that show CSA to be an
effective technology for supporting large scale non-linear stream-
ing under a wide range of operating conditions.

1.2 Organization
The remainder of this paper is organized as follows. We review

background information and related work Section 2. We discuss
a number of design considerations for achieving scalable delivery
for non-linear streaming in Section 3. In Section 4, we present
Channel Set Adaptation, our solution for scalable and adaptive non-
linear media streaming. We describe our experimental prototype
in Section 5 and present results from our experiments in Section
6. Finally, in Section 7, we conclude and explore areas for future
work.

2. BACKGROUND AND RELATED WORK
In this section, we discuss a selection of previous work most

related to our research. There is a large body of research in the area
of linear media streaming for audio and video. Much of this work
explores efficient streaming techniques for large user groups. We
provide an overview of these research efforts, as well as a review of
early work in non-linear streaming for interactive datasets. We also
review two efforts in scalable database access that explore issues
similar to those faced in our work.

2.1 Linear Streaming Techniques
Streaming technologies for linear media objects have received a

large amount of attention in recent years as media streaming has
matured into a fixture on today’s Internet. Several commercial
technologies, including Real Network’s RealAudio and Microsoft’s
Windows Media are now readily available and used to stream both
audio and video content.

These technologies are based on several fundamental research
efforts, including application-level framing, [9], forward-error cor-
rection [18], and early research initiatives in developing successful
streaming protocols [17]. This has led to several protocol standards
for supporting real-time streaming, including RTP [20] and RTSP
[21].

2.2 Linear Streaming to Large User Groups
The high bandwidth requirements for streaming audio and video

have motivated several efforts to more efficiently support the distri-
bution of linear media data to large groups of users. The multicast
network model [10], where data streams are efficiently distributed
to groups of interested users, was developed as an efficient alterna-
tive to unicast.

Multicast allows a user to join a group of receivers, all of whom
receive an identical flow of data. A multicast server is then able
to transmit a single stream to the entire group, rather than send in-
dividual streams to each user. The single stream is replicated as
needed within the network and delivered to the interested partici-
pants.

Problems with deployment of IP Multicast, the standardized ver-
sion of infrastructure multicast, have led to significant effort in de-
veloping application level multicast (ALM) [4, 3, 6, 7, 8]. Rather
than relying upon core network resources to perform group man-
agement and data replication, ALM performs these tasks at the
application level using the very hosts that are participating in the
multicast session.

Both IP Multicast and ALM techniques deliver identical flows to
all receivers, making them ideal solutions for scalable linear media
delivery. However, even for linear data, more flexibility is often
required. Several researchers have explored novel uses of multicast
protocols to provide limited flexibility in the time of access to lin-
ear media. For example, scalable video-on-demand can be accom-
plished through pyramid broadcasting [24] and its many derivatives
[1, 14, 15]. Similarly, other work, such as Receiver-Driven Layered
Multicast [16, 23], has explored using layered media delivery via
multicast to improve flexibility in the rate of data delivery.

Despite this large body of work, scalable solutions have been
largely limited to linear media objects. These techniques depend
upon the predictable access patterns associated with linear media
applications. In our work, we explore techniques that exploit multi-
cast delivery for scalable and adaptive non-linear media streaming,
where data access patterns are not known a priori.

2.3 Non-Linear Media Streaming
Several researchers have explored techniques for single-user

streaming of nonlinear datasets, particularly in the area of com-
puter graphics. For example, streaming for complex 3D geomet-
ric models can be accomplished by selectively transmitting multi-
resolution models of geometric objects based on the user’s naviga-
tion of the scene [22]. This work introduces a benefit function that
evaluates the relative utility of various models to drive the selective
transmission. Our work uses a similar utility-driven approach that
employs a more generic utility metric [11].

Progressive mesh representations, which prioritize geometric in-
formation based on their importance to overall shape, have been
used to develop geometric data streams that are resilient to lost
packets during transmission [2]. The data encoding includes redun-
dant copies of the low resolution geometric information to speed
loss recovery.

Other researchers have explored single-user streaming for al-
ternative computer graphics techniques. For example, selective
transmission techniques have been applied to image-based render-
ing with concentric mosaics [26]. Similar work has addressed the
streaming techniques for point-based models [19].

These techniques, while supporting streaming access to non-
linear media, are all based on individual user requests where the
streaming server performs per-client work. As a result, the server
workload and outgoing bandwidth requirements typically limit these
solutions to very small user populations.



Recognizing the need for more scalable solutions, some
researchers have explored support for broadcasting geometric data
[5] for scalable access. However, this work is limited to broadcast
environments and does not allow any per-client control over the
received data flow. All users receive the exact same flow of infor-
mation, making it most applicable to small datasets where last-mile
bandwidth efficiency is not a concern. Unfortunately, the Internet
is not a broadcast medium and the last-mile links are often the pri-
mary communication bottleneck link for individual clients.

2.4 Scalable Database Access
The database community has explored scalable access frame-

works that attempt to scalably support large numbers of simulta-
neous queries. Two of these efforts, the Datacylce Architecture
and Broadcast Disks, use solutions that draw on concepts that are
closely related to our work.

The Datacycle Architecture [13] has been proposed for very high
throughput database systems. In this architecture, the entire database
is broadcast repeatedly over a local high-bandwidth communica-
tion network. Data filters attached to the network then work in
parallel to search the stream of data and satisfy complex queries.

In more recent work, Broadcast Disks [1] were developed for
asymmetric communication environments where bandwidth is abun-
dant for downstream transmission but expensive for upstream queries.
Data is repeatedly broadcast over a single broadcast channel, and
rates for repeating the broadcast of individual data elements are
chosen to control their expected access times.

3. ACHIEVING SCALABILITY
A scalable solution for non-linear media streaming requires a

carefully balanced design that can manage the tradeoff between (1)
the requirement of delivering custom flows to each client and (2)
the need to remove per-client work from the server for scalable
performance. In this section, we present a number of design con-
siderations that address this tradeoff. We first discuss our simple
server design philosophy. We then describe the spectrum of possi-
ble delivery solutions.

3.1 Simple Server Design Philosophy
We have embraced a simple server design philosophy in our so-

lution for non-linear media streaming. Our design goal is to push
all computation away from the server and toward the participating
clients. This client-driven approach is motivated by two factors.

First, we are striving for a constant server load model. If the
server itself is responsible for any per-client tasks, the goal of a
constant server load is impossible to reach. Second, adaptation is
performed independently on each client and must reflect local sys-
tem and application conditions. Therefore, the logical location for
per-client adaptive decisions is on the individual clients themselves.

These two factors led us to adopt a simple server design philoso-
phy where the centralized server is tasked with constant level work
loads that are equally useful for all participants and independent
from the needs of any individual clients. The simple server design
leads directly to a bounded server load that is independent of the
number of participating clients.

3.2 Spectrum of Delivery Solutions
There is a wide spectrum of possible solutions for delivering

non-linear media to large audiences. In this section, we first present
a sample application to give our discussion a concrete context. We
then outline the two extremes of the solution spectrum. Finally, we
describe the compromise approach which we adopt in our work.

3.2.1 Example Non-Linear Application
We will use a digital museum application as an illustrative ex-

ample throughout the remainder of this section. Consider a digital
museum that aims to digitize and share a famous space (e.g., the
Palace of Versailles) with a group of virtual visitors from around
the globe. This could be accomplished by capturing a large set
of digital pictures from the scene, storing them in an image-based
rendering (IBR) dataset, and making them available online.

IBR is a computer graphics technique that uses real world pic-
tures from a scene as input, and renders novel photo-realistic views
of the scene in response to a user moving a virtual viewpoint. The
novel views are generated by interpolating between the captured
samples. Users can navigate through the virtual space interactively,
exploring the scene with the same freedom that video game players
have while exploring a game’s virtual setting.

IBR datasets are typically very large in size. A digital museum
would therefore want to stream the dataset to each user to avoid
long download delays. In addition, because users will be navigating
the scene independently, they will each require a unique flow of
image data. We therefore need to support non-linear streaming that
scales to support a large group of museum visitors.

3.2.2 The Adaptive Extreme
There are a variety of possible solutions for supporting the digital

museum streaming application. At one extreme, the most adaptive
architecture for streaming IBR data is a unicast client-server model.
Under this model, each client would first obtain a list of all available
images and their semantic (e.g., position in space) and syntactic
(e.g., encoding dependencies) relationships.

Armed with this list, a client would iteratively determine which
images are most important using a benefit function and request
those images from the server. For example, images located closer to
the virtual viewpoint would be considered more useful than images
located further away. As the user’s viewpoint moves through the
virtual space, new image requests would be generated and passed
to the server. Allowing the client to make individual image re-
quests provides the highest degree of adaptive behavior to each
client. They can custom compose the incoming stream of images
by specifically requesting each photograph.

However, this approach does not take advantage of any similarity
in interests across users. The server must respond individually to
each client’s requests and the server’s outbound bandwidth require-
ment grows linearly with respect to the number of clients. This
design does not scale well and violates our simple server design
philosophy.

3.2.3 The Scalable Extreme
At the other extreme, the most scalable architecture for the dig-

ital museum application is to cluster all of the data into one large
unit and transmit the data over a single broadcast or multicast chan-
nel. The server would repeatedly transmit the information on a
carousel. Individual clients would then tune in to the channel, con-
tinuing to receive data until the entire dataset has been downloaded.

This architecture is infinitely scalable because the server does
not perform any per-client work and the design adheres strictly to
the simple server design philosophy.

However, clients have no options for adapting the flow of im-
ages and must settle for the predefined linear ordering chosen when
grouping the images into a monolithic cluster of data. This is the
reason that broadcast and multicast work so well for linear media
distribution where all users have identical interests. It fails, how-
ever, to allow the non-linear data access that is required for digital
museum application.



3.2.4 A Scalable and Adaptive Solution
Ideally, we would like to retain both the adaptive nature of the

first extreme and the scalable properties of the second. These goals
can be reached through a middle-ground approach which achieves
both scalable and adaptive distribution of non-linear media.

Under this approach, we would group related data elements into
clusters. This would partition a media object into several larger
blocks, each of which has a semantic meaning. For example, in our
sample application, we might group all the low resolution pictures
from one corner of a room into a single cluster of images. Ef-
fectively partitioning a media object is an application-specific task
which depends greatly on the nature of the data and how that data
will be used. While we recognize the difficulty in this task, we do
not address it in this paper.

We could then distribute each cluster using multicast or broad-
cast to scalably deliver them to all interested clients. For example,
if five users were exploring the same corner of a room, they could
all subscribe to the multicast stream that contained the associated
cluster of images. Users in a different room would choose instead
to subscribe to an alternate multicast stream with an image cluster
that more closely matched their requirements.

If clients were aware of the available communication channels
and their associated semantic meanings (e.g., which images are in
which channel), they could intelligently subscribe to the multicast
streams that contain information most relevant to their needs. As
those needs changed over time, clients could quickly choose to sub-
scribe to whichever streams had become most appropriate.

For example, as a user moves from one room to another in an
IBR dataset, they could change subscriptions to receive streams
that contain pictures from their changing location. At first, the user
could subscribe to low resolution and sparsely located image chan-
nels for regions along a hallway where they are moving quickly.
After arriving and pausing to look around a new room, the client
could dedicate all of their bandwidth to dense and high resolution
image channels for their new location.

In this way, clients can compose a custom flow of images based
upon the order of their subscriptions. At the same time, the server
would perform no per-client work and would only be responsi-
ble for transmitting a fixed number of streams over a broadcast
(e.g., cable television network) or multicast-enabled (e.g., IP or
application-layer multicast) network. This channel-based approach
to providing scalable and adaptive access to non-linear media forms
the conceptual foundation for our research.

4. CHANNEL SET ADAPTATION
In this section, we present Channel Set Adaptation (CSA), a

framework that enables efficient streaming of non-linear datasets
to large user groups. CSA allows individual clients to request cus-
tom data flows for interactive applications using standard multicast
join and leave operations. CSA scales to support very large user
groups while continuing to provide interactive data access to inde-
pendently operating clients.

There are three major portions of the CSA framework. First,
we discuss the data representation formalisms used to express data
relationships and dependencies. Second, we detail our communi-
cation model which is designed to provide scalable service to large
user groups. Finally, we describe the client-driven adaptation algo-
rithms that perform both congestion and content control.

4.1 Data Representation
The CSA framework requires a data representation that formally

expresses both syntactic (e.g., encoding dependencies) and seman-
tic (e.g., similarity in meaning or utility) data relationships. To

satisfy this requirement, we use the Representation Graph (RG) ab-
straction [11], first proposed as a generic representation model for
multidimensional adaptation. The RG model is a flexible represen-
tation abstraction designed specifically for expressing both syntac-
tic and semantic data relationships in multimedia databases. The
RG framework also provides mechanisms for evaluating the rela-
tive utility of individual elements of information in the database
based on dynamic system conditions.

An RG is composed of a graph-based structure embedded within
a multidimensional utility space. Individual elements of informa-
tion are modeled as nodes. Syntactic dependencies are expressed
via a set of edges that connect sets of dependent nodes. Semantic
relationships between nodes are expressed by the nodes’ positions
within the utility space. Furthermore, the RG model defines clus-
ters as groups of edges which are accessed atomically. Each cluster
is considered a semantically consistent unit of data. The underlying
structure of an RG, including the list of nodes and their connectiv-
ity, is stored explicitly as an RG Index. There are two parts of the
RG abstraction that are particularly important within the context of
CSA: (1) Clusters and (2) the RG Index.

Clusters: A cluster is a block of data, corresponding to one
or more edges in the RG model, which is semantically consistent
and accessed atomically. For example, clusters in the digital mu-
seum application might represent groups of images captured from
nearby locations. When modeled using an RG, a dataset is essen-
tially partitioned into a set of clusters, C = {c1, · · · , cn}. The RG
model supports multiple-descriptor encoding, allowing individual
elements (e.g. pictures in the digital museum application) to be
encoded in more than one cluster.

RG Index: The RG Index is a specification of the underlying
structure of the RG. The index is a concise enumeration of the
nodes, edges, and clusters that make up the RG, as well as the def-
inition of the utility space in which the graph is embedded. The
index does not include any actual media data and is therefore very
small in size in comparison to the overall dataset. For example, in
the digital museum application, the RG Index could include a list of
meta-data describing the images that make up the IBR dataset (e.g.,
the image resolution and camera position), as well a description of
how the images are clustered (e.g., all images in the north-east cor-
ner of a specific room are assigned to cluster cj).

4.2 Media Communication Model
Our media communication model is designed to meet two goals.

First, the model must allow individual users to access the non-linear
media interactively and independently. Second, the model must
scale to support large groups of independent users.

In this section, we present our solution for meeting the two com-
peting requirements of interactivity and scalability. Our approach
delivers custom data flows to each user while maintaining a con-
stant and bounded server load that is independent of the number
of users. There are three primary components of our design: (1)
channel-based transmission, (2) session initiation, and (3) client be-
havior. Finally, we discuss the implications of our communication
model with respect to our two design goals.

4.2.1 Channel-Based Transmission
CSA requires the central server to maintain a large set of com-

munication channels, noted as G = {g1, · · · , gn}. In this context,
a channel is an individual data flow to which users can subscribe
and unsubscribe. Upon subscription, users have no control over
the data contained in an individual channel. They must either ac-
cept the data flow assigned to the active channel, or unsubscribe to
terminate the flow of information. The subscription model of our



channel-based transmission scheme can be easily supported in both
broadcast and multicast networks.

The number of channels in G is equal to the number of clusters
in the RG model used to represent a media object. A one-to-one
mapping M : C 7→ G maps each cluster ci ∈ C to a correspond-
ing channel gi ∈ G. Because clusters are semantically consistent
blocks of data (e.g., a set of images captured from the north-east
corner of a particular room), the mapping M assigns a semantic
meaning to each channel gi. The mapping information in M is
appended to the RG Index.

At runtime, the server simultaneously transmits all channels in
G, with each channel gi transmitted at a constant bit rate. While at
first this approach may appear to waste significant bandwidth, our
evaluation in Section 6 shows that for large user groups CSA is
significantly more efficient in terms of bandwidth than a traditional
unicast approach to non-linear streaming.

Similarly, CSA may seem inefficient with respect to multicast
channels, which have traditionally been a scarce resource within
a global IP multicast namespace. However, given the lack of de-
ployment for IP multicast, CSA would likely be deployed over
application-layer multicast or a dedicated broadcast network where
channels are locally defined and plentiful.

The data assigned to each cluster is typically finite in size. In
this case, the server transmits the data on a carousel transmission
schedule, repeatedly sending out the entire cluster of data with a
cyclical schedule. Each channel is encoded using forward error
correction to guard against lost packets. In the worst case, a client
can continue receiving a channel for a full carousel cycle to re-
receive a critical lost packet.

In the digital museum example, the data assigned to each channel
is static: a fixed set of images. In other applications, this data may
be dynamic. While dynamic data is in general compatible with
CSA, it introduces additional performance implications which are
not studied in this paper. The server is not responsible for any tasks
other than transmitting data over the set of channels, adhering to
our simple server design philosophy. The overall architecture is
shown in Figure 1.

4.2.2 Session Initiation
Clients are responsible for initiating a new sessions. The first

step for a new client is to obtain a copy of the RG Index. This
transaction must be supported through some out-of-band mecha-
nism. For example, the RG Index could be made available through
a well-known HTTP or FTP host.

The RG Index contains the cluster-to-channel mapping, M , as
well as the traditional RG Index contents describing the semantic
and syntactic data relationships of the associated non-linear me-
dia dataset. The RG index is essentially a menu describing which
communication channels are available as well as each channel’s as-
signed semantic meaning. For example, in the digital museum ap-
plication, the RGIndex would specify which channels contained
images from each part of the Palace of Versailles.

4.2.3 Client Behavior
Following session initiation, a client has all the information it

needs to begin receiving the non-linear data stream. Using the
client-driven adaptation algorithm we will describe in Section 4.3,
the client begins to manage its Active Channel Set (ACS).

The ACS is a list of all channels to which the client is currently
subscribed. By dynamically choosing which channels are in the
ACS as well has how many channels are active, a client can com-
pose a unique stream that delivers a custom flow of non-linear me-
dia data that is individually tailored to meet the needs of the client.

At any point in time, the set of clients subscribed to a particular
channel are all individually expressing their interest in a common
data stream: the semantic data assigned to the channel. This com-
monality of interest is used to allow scalable delivery. However,
unlike linear media streaming, the overlap in interests between this
set of users is only transient as individual clients will join and leave
channels according to local interests which evolve independently
over time. For example, two users navigating the digital museum
application may momentarily explore the same region of virtual
space when their paths through the IBR environment cross.

4.2.4 Satisfying Design Goals
Our media communication model meets our two primary de-

sign goals. First, individual users can access the non-linear media
stream interactively and independently through management of the
ACS. Second, our model easily supports large groups of indepen-
dent users because of the channel-based transmission design. We
defer our coverage of the algorithms for managing the ACS until
Section 4.3. In this remainder of this section, we concentrate on the
scalable properties of our communication model.

As outlined in our Simple Server Design Philosophy, a key re-
quirement for any scalable solution is the removal of all per-client
work from the server. We achieve this requirement by utilizing a
channel-oriented network infrastructure, which can be supported
by a broadcast or multicast network. This leads to a highly scal-
able server-side solution whose performance is independent of the
number of participating clients.

The independence of server performance from the number of
clients is a critical property in CSA. It allows us to determine a con-
stant upper bound on computation and bandwidth requirements. As
a result, servers can be properly provisioned with a finite and static
level of resources to support, in the ideal case, an infinite number
of simultaneous users.

4.3 Client-Driven Adaptation
Individual clients are responsible for adapting their incoming

data flows to match their own application preferences and resource
requirements. Adaptation is accomplished independently by each
client as they manage their ACS.

ACS management is performed through two fundamental oper-
ations. The first operation, Sub{gi, ACS}, is used to subscribe
to a new channel. Upon subscription, the new channel is added
to the ACS. The second operation, Unsub{gj , ACS}, is used
to unsubscribe from an already active channel. This operation re-
moves channel gj from the ACS assuming it is a member. The two
operations are defined below.

Sub{gi, ACS} = ACS ∪ {gi} (1)
Unsub{gj , ACS} = ACS \ gj (2)

Both the subscribe and unsubscribe operations can be performed
in broadcast or multicast networks without any direct contact with
the server. By defining adaptation in terms of these two operations,
we can ensure adaptive data flows as well as scalable performance.

The client-driven adaptation algorithm must accomplish two tasks.
First, it must perform congestion control to manage the speed at
which data arrives. Second, it must perform content control to
achieve the individualized data flows required by non-linear me-
dia applications. We define both of these adaptive tasks in terms of
the subscribe and unsubscribe operations in the following sections.

4.3.1 Congestion Control
A client participating in a non-linear media stream using CSA

must manage the speed at which data arrives over the network



through a process known as congestion control. This is done by
managing the size of the ACS.

Under our channel-based transmission scheme, the server offers
a large set of constant bitrate channels, G. Clients subscribe to a
subset of this offering, so that ACS ⊂ G. Because each channel
gi ∈ ACS is offered at a constant bitrate, the overall bitrate of the
arriving ACS is determined by the size of the set, or |ACS|. The
congestion control problem for CSA is analogous to the problem
faced in Receiver-Driven Layered Multicast [16], and we apply a
similar solution.

At runtime, the client adjusts the size of the ACS through sub-
scribe and unsubscribe operations At signs of network congestion,
such as the detection of lost packets, the client decreases |ACS|
through an unsubscribe operation. In order to maintain the most
useful data flow after the decrease in subscription level, a client
unsubscribes from the least useful active channel. We utilize the
Utility-Cost Ratio (UCR) metric described in [11] for this evalu-
ation. The UCR metric combines application-specific utility and
cost functions to determine how best to adapt a multimedia dataset.

In times of exceptionally strong network performance, the client
probes for additional bandwidth by increasing |ACS| through a
subscribe operation. Once again, we use the UCR metric to deter-
mine which channel should be added to the ACS.

A series of timers are used for each level of subscription to im-
prove stability and to allow the system to converge more quickly to
an appropriate subscription level.

4.3.2 Content Control
In parallel to congestion control, each client must also perform

content control. This task is unique to the problem of non-linear
streaming. In traditional linear media applications, data is delivered
in a fixed order and there is no freedom to change the order to
meet application needs. However, individualized control over the
contents of an arriving data stream is a primary requirement for
non-linear media access.

Content control is performed by aggressively changing channels
over time, managing the ACS to ensure that the active channels
match the current application requirements. Recall that the data
representation abstraction builds clusters that are semantically con-
sistent. As a result, each channel has an associated semantic mean-
ing. This allows us to use channel subscription operations to ex-
press an application’s needs for specific semantically meaningful
units of data.

At runtime, a client iteratively compares the least useful active
channel, gactive, with the most useful inactive channel, ginactive.
Whenever it is discovered that the utility of ginactive is greater than
that of gactive, the two swap positions and ginactive becomes a
member of the ACS.

The channel subscription pattern is driven by the evaluation of
utility that is performed on each iteration. We use the same UCR
metric as the congestion control algorithm for determining the rel-
ative utility of each channel.

The UCR metric is a spatial measure of utility defined on the
representation graph structure included in the RG Index. Most im-
portantly, it evaluates utility with respect to the current application
conditions and preferences. As a result, the sequence of subscrip-
tion operations performed in the adaptation process is determined
uniquely on each client in response to user interactions and locally
changing system conditions.

Each client will exhibit their own pattern of subscription requests
based upon their own local needs. For example, Figure 2 illustrates
a possible sequence of subscription operations over a small window
of time. In the figure, the ACS starts at size two and grows to
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Figure 2: A hypothetical plot that shows the evolution of the
ACS over time.
size four with the subscriptions at times t1, and t2. At time t3,
the congestion control algorithm determines that the ACS is too
large and the ACS is contracted back down to size three. The
content control algorithm initiates a channel swap at time t4. This
is followed by another subscription to enlarge in the ACS (at t5)
and another channel swap (at t6).

The concatenation of data flows, following a series of subscribe
and unsubscribe operations, produces a unique flow of data that is
delivered to each individual client. In addition, the unique flow is
composed without any direct communication between clients and
the server. As a result, CSA can deliver unique, customized data
flows to individual clients in fully scalable manner.

5. EXPERIMENTAL PROTOTYPE
This section describes the experimental prototype used to evalu-

ate the performance of Channel Set Adaptation. We first present the
target application for the prototype: a image-based rendering tool
for digital museums. We then describe the testbed and methodolo-
gies used in our experiments.

5.1 Prototype Application
We have developed a experimental prototype to evaluate Chan-

nel Set Adaptation as a solution for non-linear media streaming.
The prototype application is an image-based rendering (IBR) ap-
plication for digital museums. IBR environments allow free view-
point exploration of digitized spaces, immersing users in a photo-
realistic recreation of a virtual place that can be navigated interac-
tively. When combined with digital museums, these environments
promise to enable large populations from around the globe to ex-
plore remote artifacts and locations [12].

IBR applications require non-linear access to possibly massive
sets of images as input to their reconstruction algorithms. This do-
main is therefore a strong match for our work in supporting non-
linear media streaming that can scale to support a large crowd of
digital museum visitors.

Our prototype is designed as a client-server system with a single
image server that uses Channel Set Adaptation to scalably transmit
streams of images to a set of interested clients. Each client is able to
navigate through the digitized space independently along their own
unique paths. For this reason, each client must be able to adapt
their own data flow based on their particular needs.

The sample dataset used in our experiments consists of approx-
imately 8,000 color images captured from within a library envi-
ronment. Each image has a resolution of 512 × 512 pixels. The
pictures are distributed across a 2D plane at eye level.

We use an RG composed of nearly 16,000 nodes. These nodes
correspond to each of the 8,000 images stored at two resolutions.
The number of clusters in the RG was varied across experiments.
The overall RG was embedded within a five dimensional utility
space, defined by three spatial dimensions, image resolution, and
spatial density.



5.2 Experiment Testbed
We performed a series of experiments to evaluate the perfor-

mance of Channel Set Adaptation in meeting the demands of non-
linear media streaming for large user groups. Rather than rely
on network simulation, we chose to execute our experiments on
the Emulab network testbed [25] which uses network emulation to
achieve more realistic operating conditions.

In all of our experiments, we employed network topologies that
were provisioned with a single server with a 100Mbps network
connection. Our network model assumed that all bandwidth bot-
tlenecks occur within the “last mile” for each client. We therefore
modeled all core links within our topology with the same 100Mbps
bandwidth as the server. Links connecting clients to the core net-
work were given a fixed bandwidth of 5Mbps for all of the experi-
ments reported in Section 6.

5.3 Experiment Methodology
In this section, we describe our methodology in evaluating the

performance for our experimental prototype. We describe both our
approach to client emulation and the formulation of the SUM per-
formance metric.

5.3.1 Client Emulation
Because our experiments required that we simulate large groups

of users, we were forced to emulate user behavior through an auto-
mated process. For all experiments, participating clients navigated
a ten minute path through the IBR dataset. The path included a va-
riety of movement types including both fast and slow movements
and changes of direction.

During the ten minute execution time, we compute a perfor-
mance metric once per second. We describe the performance metric
in more detail in Section 5.3.2. When presenting average perfor-
mance values, we consider only the second five minutes of perfor-
mance data from each ten minute session. This allows us to avoid
any transient events that may occur during the early and less stable
moments of a session when analyzing average behavior.

5.3.2 The SUM Performance Metric
Throughout our evaluation, we measure performance using the

Summed Utility Metric (SUM), an application-independent perfor-
mance metric for evaluating the behavior of our prototype that is
based upon the abstract adaptation framework proposed in [11].
The SUM measures system performance as a function of the cur-
rent state of the representation graph.

The SUM metric requires no domain-specific knowledge because
it is defined as a function on the abstract RG data structure. Ap-
plication knowledge is incorporated into the metric through the
application-defined utility metric. The SUM metric measures how
well a system delivers data to a client in response to a specific util-
ity metric. Therefore, we can compare the performance of various
delivery mechanisms so long as the underlying RG and utility met-
rics remain the same. This is the methodology used in our evalu-
ations in Section 6 where we compare the effectiveness of various
approaches to the digital museum streaming application.

The SUM is derived from the notion that the system’s adaptive
performance can be measured by the utility of the data it has ob-
tained at any given point in time. The RG structure allows us to
mark obtained data elements by placing the elements in the re-
solved state. We can then apply the utility metric to the each re-
solved node. The SUM is the sum of all of resolved node utility
values. A full discussion on possible node states and state transi-
tions is beyond the scope of this paper and we refer you to [11] for
more information. We formally define the SUM metric in Equation

3, where R is the set of all resolved nodes and UtilMetric is the
application-specific utility metric.

SUM =
X

ni∈R

UtilMetric(ni) (3)

It is important to note that the SUM is a measure of performance
at a single point in time. To capture a reliable measure of system
behavior, the SUM metric must be evaluated repeatedly over a pe-
riod of time.

6. RESULTS
We performed a series of experiments using our prototype and

the Emulab network testbed. These experiments highlight the abil-
ity of Channel Set Adaptation (CSA) to support large user groups
and to provide the custom data flows required for non-linear me-
dia streaming. We also explore the impact that certain engineering
parameters have on overall performance.

6.1 Scalable Delivery
One of the primary motivations for the CSA framework is the

ability to support large groups of independent users. We performed
a series of experiments to evaluate performance at a range of group
sizes. Our evaluations compared three delivery mechanisms.

First, we configured the prototype to use the traditional unicast
request-response model for non-linear media distribution. The re-
maining two configurations were CSA-based: one using a multicast
network and the other a broadcast network.

In the two CSA configurations, the broadcast-based experiment
serves as a benchmark for ideal multicast performance. Broadcast
supports the same channel-based subscription model as multicast,
but without the overhead of group management. However, broad-
cast solutions are only deployable over dedicated networks (such
as cable television). For this reason, we also include results from
experiments using multicast-based CSA.

In each of the three configurations, we experimented with group
sizes ranging from 1 to 65. Because we are using emulation with
actual hardware resources, the upper limit in this range was deter-
mined by the size of the testbed. We utilized the GAL adaptation
library and identical utility metrics across all experiments, allowing
us to compare performance using the SUM metric.

Under both CSA variants, we used identical RG representations
with 160 clusters, and therefore 160 channels. For unicast, we used
the same RG with one modification. We placed every edge in its
own cluster, resulting in a cluster count of 15,568. Because clusters
define the granularity of data access, this change provided complete
freedom of access to the unicast experiments.

The results of these experiments are shown in Figure 3. For
all experiments, we provisioned the server with 100Mbps of band-
width and each client with 5Mbps. As a result, the unicast server
was able to fully support nearly 20 clients (n = 20) before satu-
rating it’s network resources. At small group sizes of n < 20, the
unicast configuration outperforms the broadcast-based CSA vari-
ant by roughly 14%. The increase in performance for unicast is
directly attributable to the two orders of magnitude increase in the
number of clusters. The additional clusters provide greater flexi-
bility in data access and allow the clients to make data requests to
more tightly match their requirements. We call the drop in perfor-
mance due to clustering in CSA the cluster penalty.

Once the group size reaches n = 20, the unicast server’s band-
width reaches the point of saturation. Past this point, the perfor-
mance drops as the group size increases. Performance will asymp-
totically approach zero as the server’s bandwidth is divided in ser-
vice of more and more users.
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Figure 3: System performance for group sizes up to 65.

Under broadcast-based CSA, performance is independent of
group size. This important result shows that our solution can de-
liver independent non-linear media streams to very large user groups
without saturating the central server. This is highlighted by the flat
plot for broadcast performance in Figure 3. While CSA pays a
penalty in performance for small group sizes, it dramatically out-
performs unicast for large groups of users. After a crossover point
at n ≈ 32, the drop in unicast performance due to congestion is
higher than the cluster penalty. As n grows, the performance gap
continues to increase.

The exact location of the crossover point is determined by several
engineering parameters including the amount of bandwidth pro-
visioned to the server, the average bottleneck bandwidth for each
client, and the degree of clustering used in the CSA solution. How-
ever, the general shape of the plots in Figure 3 will hold regardless
of the specific parameter values. These results show that a fine-
grained unicast architecture remains the appropriate solution for
small user groups. The CSA solution will perform far better with
larger group sizes.

The third plot in Figure 3 shows that the performance for mul-
ticast CSA, similar to broadcast CSA, exhibits immunity to group
size. Performance remains flat as group size climbs toward 65.
However, the multicast configuration performs slightly worse than
broadcast. The drop in performance is due largely to leave laten-
cies that delay the effect of subscription operations which are the
principle adaptive mechanism. Slower adaptation leads to a drop in
performance. We further explore the impact of these overheads in
Section 6.3.

The absence of join and leave latencies for broadcast-based CSA
makes its performance a benchmark for ideal CSA performance.
It corresponds to the best possible performance for any multicast-
based CSA implementation.

6.2 Adaptation for Congestion Control
A key component of the client-driven adaptation algorithm is

congestion control. As described in Section 4.3.1, we adjust the
size of the ACS in response to changes in network loss rates.
When network conditions remain positive, the size of the ACS
is increased and data arrives at the client at a faster rate. When sig-
nificant loss rates are detected, the client shrinks its ACS and the
data rate decreases.

We evaluated the performance of our congestion control algo-
rithm by observing its behavior in the face competing TCP traffic.
In one experiment, we began a new CSA session for a client that
initially had no competing traffic over its bottleneck link. After two
and a half minutes (t = 150), we introduced a 180 second load of
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Figure 4: Rate adaptation in response HTTP cross traffic. The
adaptation constants for altering the ACS size can be tuned to
provide quicker back-off at the expense of datarate stability.

simulated HTTP traffic over the congested link. At t = 330, the
HTTP traffic ceased. The results are shown in Figure 4.

In the first 30 seconds, the size of the ACS quickly increases
as the client performs its initial probe for available bandwidth. At
t ≈ 30, the ACS grows to size 11 and congests the bottleneck
link. The increase in ACS size is matched by a spike in the loss
rate estimate. As a result, the congestion control algorithm backs
the ACS down to size 10. From t = 30 to t = 150, the client con-
tinues to probe for additional bandwidth, but at growing intervals
as the timer duration increases.

At t = 150, the competing HTTP traffic begins flowing over the
bottleneck link and the measured loss rate begins to climb. Typi-
cally, the client would back down extremely fast in response to the
increased loss rate. However, in this case, as shown in Figure 4, the
client initially hesitates to back down from |ACS| = 10. The de-
layed response is due to the fact that the onset of competing traffic
occurred nearly simultaneously with a decrease in ACS size.

After detecting that the loss rates remained steady, the client con-
tinued to back down, with the ACS size falling to as low as five.
At t = 330, the HTTP traffic was removed from the bottleneck
link and the client detected an improvement in network conditions.
Very rapidly, the CSA size was increased to 10 following the same
probing pattern as seen at the start of the session.

The timers used to govern the rate of increase and decrease in
ACS size are tunable and can be configured to yield faster back-
off times at the expense of lower stability. The specific settings
for the timer parameters should be chosen to best match a par-
ticular application. For example, stability is less critical for the
IBR prototype application than it is for typical video streaming.
We can therefore set the timer parameters to adapt more quickly
to changes in network congestion. In the future, we will explore
coordinated approaches to achieving more TCP-friendly conges-
tion control Vicisano:1997:TCPlike by assigning partial priorities
to channels (e.g., high resolution versus low resolution pictures).

6.3 Leave Latency and Content Control
The CSA adaptation algorithm uses subscription operations to

perform both content and congestion control. Any significant la-
tency between the issuance of a subscription operation and the ac-
tual effect on transmission can have dramatic impact on overall per-
formance.

In particular, various multicast implementations (e.g., IP multi-
cast, application layer multicast (ALM) protocols, etc.) exhibit a



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

Average Summed Utility Metric vs. Leave Latency

Leave Latency (ms)

A
ve

ra
ge

 S
um

m
ed

 U
til

ity
 M

et
ric

Figure 5: Impact of leave latency on performance.

wide range in leave latency: the time it takes between an unsub-
scribe request and the actual termination of the data flow. For ex-
ample, our experiments found that IP multicast showed an average
leave latency of about three seconds. Depending on their design,
ALM protocols can be significantly better or worse.

We designed an experiment to evaluate the impact of leave la-
tency on CSA performance by introducing artificial leave latencies
from 0 to 5000 milliseconds. The results are shown in Figure 5.
The experiment shows that longer latencies have a negative impact
on performance. In particular, the three second leave latency mea-
sured in our IP multicast experiments is far from the ideal range for
supporting CSA.

Our results show a steep drop in performance at between two and
three seconds of leave latency. The overall trend in performance is
important. However, the exact slope of the drop is highly dependent
on fraction of time spent on overhead and depends on the specific
parameters of the experiment (see Equation 4).

Overhead =
SubscriptionOpLatency

〈ListenT ime〉 (4)

When the average duration for a single subscription is long, the
inefficiency introduced by the leave latency is relatively small and
the impact on performance will be lower. Conversely, if the av-
erage subscription duration is short, the overhead is large and can
dramatically impact performance.

In other research, we have been developing StrandCast [4], a
novel ALM algorithm that attempts to minimize leave latency, and
therefore overhead, while supporting a high rate of subscription
operations. In the future, we plan to evaluate StrandCast as the un-
derlying multicast protocol for CSA and expect that several design
properties, including very low leave latencies, will make it ideal for
CSA-based applications.

6.4 Granularity of Access
An important parameter in configuring a CSA session is the num-

ber of channels in set G. Because G is mapped to the set of clusters
C, the number of channels defines the granularity of access to the
overall dataset. A small size for G provides relatively few choices
for adapting the ACS, reducing the ability of individual clients to
customize their incoming data flow. Conversely, a large size of G
(noted as |G|) provides a great flexibility in ACS management and
enables highly customized data flows.

In the extreme, a dataset where |G| = 1 corresponds to a sin-
gle channel and is equivalent to a common monolithic file that all
clients must download. When |G| is maximized so that every byte
of data is available through a unique channel, clients are given ran-
dom access to the database.
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Figure 6: Relationship between performance, latency, and the
number of available channels.

As a result, additional channels generally result in higher perfor-
mance. Figure 6 shows a series of experiments performed using
four different channel configurations. As expected, the SUM value
is highest when the number of channels is greatest.

The benefit of additional channels is greatest when the subscrip-
tion operation latency is negligible. However, the impact of la-
tency on performance is more pronounced in high-channel config-
urations. This is evidenced in Figure 6 by the steeper slopes in the
high-channel plots.

The steeper decline in performance is a direct result of the in-
creased rate of channel subscription operations for high-channel
configurations. The faster pace of subscriptions is exactly what
makes large channel sets beneficial: additional channels aid in com-
posing custom data flows. However, the increase in subscription
operations reduces the expected listen time for any given channel.
As reflected in the results as well as Equation 4, a shorter expected
listen time magnifies the impact of changes in the subscription la-
tency.

At first glance, our results seem to hint that it would be desirable
to use an enormous number of channels to obtain the best overall
performance. In fact, in the absence of any overhead costs, that
would be the case. This is why the random-access unicast configu-
ration outperforms both CSA variants for small user groups.

However, in a CSA-based system, which is needed to support
large user groups, this would not be practical. First, any multicast
infrastructure will introduce some amount of subscription operation
latency. Second, the expected listen time in this extreme configu-
ration would be extremely short. Equation 4 shows that these two
factors combine to produce extreme amounts of overhead and leave
to an inefficient solution.

A practical system design must balance the benefit of a high
channel count access with the overhead cost of supporting it. The
optimal compromise depends very highly on subscription operation
latencies associated with the multicast infrastructure. This conclu-
sion motivates additional work in developing more efficient mul-
ticast algorithms with low subscription operation overheads, espe-
cially in high-churn environments.

7. CONCLUSIONS AND FUTURE WORK
We have presented Channel Set Adaptation (CSA), a technique

for scalable and adaptive streaming of non-linear media. Our work
is motivated by a “simple server” design philosophy that achieves
scalability by removing all per-client work from the server. In our
work, each participating client is responsible for independently per-
forming their own adaptive tasks through management of a set of
active communication channels.



We detailed the three primary components of CSA: (1) a data
representation abstraction, (2) a channel-based media communica-
tion model, and (3) a client-driven adaptation algorithm. The data
representation allows us to model a non-linear media database as a
set of semantically consistent clusters. Our communication model
defines a one-to-one mapping between clusters and channels, cre-
ating a semantically meaningful set of distribution channels. The
adaptation algorithm, performed independently on each client, per-
forms congestion and content control via channel subscription op-
erations. Taken together, these components provide a framework
for scalable and adaptive streaming of non-linear media that allows
clients to receive custom data flows in a highly scalable fashion.

We have demonstrated the effectiveness of our approach through
experiments using network emulation. We evaluated an experimen-
tal prototype that uses CSA for streaming a large Image-Based Ren-
dering dataset to groups of independent clients. Our results show
that CSA is an effective technology for supporting large scale non-
linear streaming under a wide range of operating conditions.

Despite the promise shown in our initial results, there are several
areas that require additional research. For example, our algorithm
for congestion control works on the assumption that each client is
operating behind its own bottleneck link. This is often the case
where last-mile links are responsible for a large fraction of band-
width bottlenecks. However, in the future, we would like to move
beyond this assumption. We plan to enhance our algorithm to per-
form well even in the presence of non-shared bottleneck links.

We are also interested in exploring dynamic cluster-to-channel
mappings. Our current prototype assumes a static mapping that
is predefined in the RG Index. A dynamic mapping could enable
distribution of dynamic datasets where content assigned to each
channel changes over time. In addition, dynamic mappings could
servers to reallocate communication resources to better serve high-
demand portions of the overall dataset (i.e., the “Mona Lisa” effect,
where certain parts of a dataset get disproportionate attention from
users just as the famous painting gets far more attention than other
in the Louvre museum).

Another important area for future work is evaluation with very
large user groups. Extrapolating the results presented in this pa-
per hints at strong performance benefits for very large group sizes.
However, our experiments were limited to group sizes of 65 be-
cause of the required infrastructure.

Finally, our results highlight the need for an efficient multicast
protocol that has very low subscription operation latency and that
can support high churn environments. Most of the existing pro-
tocols have fairly high subscription latencies and are designed to
support long-term sessions. CSA places fundamentally new de-
mands on the multicast infrastructure and new protocols can be
designed that would provide significantly improved performance.
We have already begun implementation of StrandCast [4], a novel
application-layer multicast protocol, designed specifically to sup-
port technologies like CSA.
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