
A General Framework for Multidimensional Adaptation

David Gotz
gotz@cs.unc.edu

Ketan Mayer-Patel
kmp@cs.unc.edu

University of North Carolina at Chapel Hill
CB #3175, Sitterson Hall

Chapel Hill, NC 27599 USA

ABSTRACT
Data adaptation is an essential system component in a wide variety
of application areas. To date, most applications use ad hoc meth-
ods to manage data in response to limited resources and changing
system conditions. We present a generic adaptation framework that
distills the common elements essential to a broad class of adaptive
applications. Our framework provides an abstract data representa-
tion and defines a generic set of adaptation operations that directly
support multidimensional and multimedia adaptive behavior. We
present several application case studies and demonstrate the per-
formance of our framework on an experimental prototype.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; H.1.1 [Information Storage and Retrieval]: Sys-
tems and Information Theory—Value of information

General Terms
Algorithms, Performance, Measurement

Keywords
Adaptation, multimedia

1. INTRODUCTION
Advances in storage and processing technologies now allow sci-

entists to capture, simulate, or create immense collections of data.
Unfortunately, advances in networking and display technologies,
while impressive, have not kept pace. Although we can build multi-
gigabit networks, achieving those line speeds end-to-end remains
almost impossible. Similarly, high-resolution display technologies
have improved but essentially remain within a factor of ten of the
megapixel displays we have enjoyed for nearly twenty years. As the
gap between the amount of data we can capture, store, and process
and the resources we have to transmit and view that data increases,
the problem of adaptation becomes increasingly central to the per-
formance of high-bandwidth and high-volume applications such as
data visualization, teleimmersion, and media streaming.

Adaptation techniques, algorithms, and frameworks have largely
been developed within the context of a specific application or data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’04, October 10-16, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-893-8/04/0010 ...$5.00.

type. Geographic Information Systems (GIS), for example, use
multiresolutional data for visualization and representation of ter-
rain information [7]. In graphics, multiresolutional geometry infor-
mation is used to create hierarchical levels of detail (HLODs) [13].
These are used to dynamically adjust model complexity in order
to achieve a target rendering rate. In multimedia, layered media
encodings are used to dynamically scale media bitrates to match
current network conditions [17].

The challenge we face when tackling the adaptation problem in
whatever context it appears is twofold. First, how can we com-
pactly and intuitively specify adaptation policy to support specific
user-level goals? Second, given a particular adaptation policy and
set of user-level goals, how can we efficiently evaluate that policy
relative to available resources and the way the data are represented
and organized?

While ad hoc application-specific methods may be effective when
the number of dimensions for adaptation is limited, the problem can
become overwhelming as the number of dimensions increases. The
same is true when an adaptation decision must negotiate between
data sources of fundamentally divergent natures. The complexity of
these mechanisms may become very difficult to correctly manage.
Expressing adaptation policy in a rule-based manner, for example,
becomes painful as the number of possible tradeoffs grows.

In this paper, we present a general framework for multidimen-
sional adaptation that makes the expression and evaluation of adap-
tation policies more intuitive and straightforward. We address the
need to model relationships among data, compactly express adap-
tation policies, and dynamically evaluate utility with respect to sys-
tem conditions.

We believe that providing a general framework for adaptation
will help manage complexity, reduce development time, and enable
the reuse of sophisticated adaptation structures in future systems.

1.1 Main Results
We present a general framework for multidimensional adapta-

tion that is both intuitive and widely applicable. First, we distill the
common elements essential to a broad class of adaptive systems.
We then present our framework for general adaptation. This frame-
work defines a graph-based representation abstraction embedded
within a multidimensional utility space. Dimensional tradeoffs,
cost metrics, and utility metrics are defined as spatial operations
performed upon the representation graph. Adaptation is guided by
iterative evaluation of the cost and utility metrics.

To illustrate the broad applicability of our framework, we present
three case studies. We discuss the use of our framework in the con-
text of a layered video streaming system, a remote 3D geometry
rendering system, and a remote image-based rendering (IBR) sys-
tem. We include results from an experimental evaluation of our
IBR prototype.

1.2 Organization
The remainder of this paper is organized as follows. We review

related work in Section 2 and discuss the general adaptation prob-
lem space in Section 3. We describe our framework in detail in
Section 4. We present several application case studies in Section 5,
followed by an experimental evaluation in Section 6. We conclude
with a discussion of future work in Section 7.

2. BACKGROUND AND RELATED WORK
In this section, we discuss a selection of other work most related

to our research. Previous work has largely addressed the problem
of adaptation in the context of specific applications. We therefore
present a sampling of work from a number of application areas.
We then discuss some attempts to identify the common elements of
adaptation and generalize the problem across multiple fields.

2.1 Application-Specific Adaptation
Different adaptation strategies have been employed in a number

of specific application areas. These include multimedia systems,
computer graphics, and visualization. These techniques attempt to
balance the competing needs of both application and system level
requirements by accessing data at various resolutions. The solu-
tions have tended to be application specific and ad hoc.

In multimedia, adaptation is an essential task. For example,
video streaming adaptation has been achieved through several dif-
ferent ad hoc mechanisms. These include controlling the signal-to-
noise ratio (SNR) in video coding [10], frame rate adaptation [20],
or combinations of the two methods [16]. Layered video coding
techniques have also been used to achieve adaptive performance
[17]. More general approaches for include quality of service se-
mantics [23] and augmentation and substitution models [3].

In computer graphics, the complexity of geometric models is
often much greater than typical systems can handle for real-time
rendering. As a result, significant effort has been spent develop-
ing techniques for geometric simplification [13]. At runtime, mod-
els of appropriate resolution are chosen based on any of a number
of heuristics, including visibility estimates [6], screen-space error
computations [12], and rendering costs [8]. These techniques are
especially important for remote access to large, complex datasets
where communication bandwidth is at a premium [9, 21].

Visualization systems must also deal with databases that con-
tain far too much information to graphically display. As a result,
adaptive mechanisms have been widely adopted. These include
multiresolution terrain models [7], multiresolution volumetric rep-
resentations [11], and multiresolutional and multidimensional data
query infrastructures [2].

2.2 Generalized Adaptation
While most adaptation techniques have been developed in the

context of a specific application, there are some notable exceptions.
Some researchers have proposed several design principles for adap-
tive systems [14]. Other investigators emphasize the importance of
data representation in adaptation [15].

In addition to general principles, formal adaptation models such
as Adaptation Spaces [4] have been developed to explicitly spec-
ify possible alternative application behaviors for reliable systems.
In other work, resource-centric quality-of-service models [5] are
used to adapt resource allocations to compensate for changes in the
system’s state.

3. PROBLEM SPACE
While adaptation must necessarily incorporate application spe-

cific knowledge, there are a number of concepts that are common

across a broad class of adaptive applications. Generally speaking,
adaptation is the process of adjusting access to data to reflect cur-
rent system conditions. In this section, we discuss the common
adaptation concepts of data representation, metrics, and operations.

3.1 Representation
Adaptive data representations, regardless of application, are typ-

ically hierarchical or multiresolutional in nature. This derives from
the fundamental reason for adaptation: limited resources must be
allocated in response to changing system conditions. Without mul-
tiresolutional representations there would be little flexibility in data
access and adaptation would be difficult. While simple represen-
tations may adapt across a single dimension, other datasets may
contain several dimensions for adaptive behavior. We define the
dimensionalityof a dataset as the number of adaptive dimensions.

For example, a simple layered video representation has a dimen-
sionality of one when the only choice in transmission is the number
of layers. An alternative representation might have a dimensional-
ity of three: color depth, frame rate, and image resolution.

A dataset can be considered to be a collection of individualele-
mentsof information. An element is an atomic unit of information
at the application level. For example, in a layered video represen-
tation, one layer of one frame might be treated as an element.

Despite the notional independence of individual elements, there
are often encoding dependencies introduced between them. De-
pendencies can be introduced in several ways, ranging from spe-
cific data structural reasons (for example, the dependence between
layers in a layered video stream) to storage efficiency (for exam-
ple, predictive coding between video frames). Data dependencies
between elements can be viewed as thesyntacticrelationship be-
tween elements.

There can also besemanticrelationships between elements. For
example, a multiple-descriptor video stream stored at several bi-
trates has a group of independent elements for each frame. In this
example, unlike a layered representation, each element is indepen-
dently encoded and there are no syntactic dependencies between
different bitrate streams. However, there is still a logical relation-
ship that relates the set of elements within the bitrate dimension.

Elements are often grouped intoclusterswhen encoded. We de-
fine a cluster as an access-level data structure which combines one
or more elements. Data is stored as atomic clusters of information.
For example, each quality layer in a video representation could be
considered a cluster. During video playback, data is accessed by
choosing a certain number of layers. This is in contrast to the ele-
mental notion of individual video frames.

Finally, it is important to note the distinction between the actual
encoded data and the representation’s data structure. The represen-
tation structure, defined by elements and their relationships, is used
to decide which data is required during adaptation. The structure
may be explicit or implicit, but it is always there. When explic-
itly defined, the structure has been given many names in different
fields. For example, the structure has been called a scene-graph
skeleton[22] in graphics, adescription[9] in streaming complex
media types, and asketch[15] in wireless systems.

3.2 Utility-Cost Ratio
The notions ofutility andcostare fundamental concepts essential

to adaptation. Individual elements are either more or less useful to
an application than others. We define this notion as the utility of
information. At the same time, access to a unit of data comes at
some cost, often measured in time or required resources.

Given a set of available elements, the process of adaptation at-
tempts to maximize the utility of the received information and min-

imize the associated cost. When noted as a ratio of utility with
respect to cost, adaptation becomes an attempt to maximize the
utility-cost ratio, or UCR.

3.3 Adaptation Operations
There are a number of common adaptation operations present in

most adaptive applications. Given a data structure description and
an algorithm for evaluating the utility and cost of specific elements,
an application must take action to adapt the flow of data.

The two primary operations,load andunload, are tightly cou-
pled. The load operation is performed to resolve data for a specific
element in the data representation. An unload operation can be
used to abort an ongoing load operation if the application decides
it no longer needs the associated data, or to signal the disposal of
an element’s associated information at some point after the load
operation has completed

Another universal adaptation operation is the management of
inter-dimensional tradeoffs in utility. We refer to this asdimen-
sional scaling. As system conditions change, an application may
need to adjust the relative importance of individual dimensions with
respect to other dimensions in the dataset.

4. FRAMEWORK
This section outlines our general framework for adaptation. We

develop a graph-based data representation abstraction, which is em-
bedded within a multidimensional utility space. We then pose the
task of adaptation as a maximization problem.

4.1 Illustrative Example
Throughout this section, we illustrate our framework via a sim-

plified sample application. For each new concept, we present a for-
mal definition followed by a concrete example. The sample appli-
cation is a simplified computer graphics system where a user navi-
gates through a one dimensional scene composed of a collection of
geometric objects, each of which is stored at multiple resolutions.
We assume that the geometric models are layered in the sense that
lower resolution models are used to code higher resolution infor-
mation. At runtime, the example application should adapt the flow
of incoming data to reflect both limited rendering resources and a
moving viewpoint within the one dimensional scene.

4.2 Representation Abstraction
Our representation abstraction is a graph-based structure em-

bedded within a multidimensional utility space. In the following
subsections, we describe our abstraction and outline the mapping
between individual components of our abstraction and the corre-
sponding universal data representation properties outlined in Sec-
tion 3.1.

4.2.1 Utility Space
The utility space, noted asU, is a linear space over the field<.

The spaceU is ann-dimensional space wheren corresponds to the
dimensionality of the dataset to be represented.

In general, utility space dimensions can be categorized into a
taxonomy of three types. For any instance ofU, there may be zero
or more of each dimensional type. The three classifications are:

• Navigable: Dimensions in which an application maintains a
dynamic point of interest. The application adjusts the posi-
tion of the point of interest based on application conditions.

• Static: Dimensions in which there is a predefined and con-
stant point of interest regardless of any dynamic system con-
ditions. This is analogous to a navigable layer with a fixed
point of interest.

L:
 R

es
o

lu
ti

o
n

 L
ev

el

X: Scene

L:
 R

es
o

lu
ti

o
n

 L
ev

el

X: Scene

L:
 R

es
o

lu
ti

o
n

 L
ev

el

X: Scene

L:
 R

es
o

lu
ti

o
n

 L
ev

el

X: Scene

a) b)

c) d)
p

Figure 1: The sample application’s representation graph.

• Relational: Dimensions which relate two or more distinct
media subspaces (defined below) to form the global utility
spaceU. Relational dimensions provide a mechanism to ex-
press the relative importance between two or more indepen-
dent media objects.

For multimedia applications, each media object is embedded with-
in an independentmedia subspace. We note these asMi. The set
{M1, · · · ,Mn} is unified via one or more relational dimensions
to form the global utility spaceU. Within U, we define thenavi-
gable subspace, N, as the region defined by the set of all navigable
dimensions.

For example, our sample application has a dimensionality of two.
There is a single navigable dimension,X, which defines the spatial
position of geometric objects within the scene. The second dimen-
sion,L, is an static dimension and is used to reflect the resolution
level of each representation of an object. The static value is zero,
representing the lowest possible level, because we are interested in
resolving low resolution data before high resolution information.

We therefore define the utility space asU = (X × L) and the
navigable subspace asN = (X). There is only one media type in
this example, soM1 = U. We illustrateU in Figure 1(a).

4.2.2 Nodes
In our abstraction, nodes map to individual elements and repre-

sent an atomic unit of information. Utility evaluation (see Section
4.4) is performed at node-level granularity. For a given dataset,
there is a set of all nodes,S. Each nodeni ∈ S has a number of
individual properties.

First, a nodeni is associated with a single media object and is
located at a specific pointPos{ni} within a single media subspace
Mj . A node has no defined position within all other media sub-
spaces{Mk}, k 6= j, andPos{ni} is therefore more correctly de-
scribed as a hyperplane withinU rather than a point. The relative
positions between nodes are used to express the semantic relation-
ship between individual elements of information.

Each node is assigned one of four states. This state,State{ni},
can change over time through state transitions. The possible states
and valid transitions are described in Section 4.3. A node also
maintains lists of both arriving edges,Arr{ni}, and departing
edges,Dep{ni}. We present the concept of edges in Section 4.2.3.

In our running example, we use nodes to represent the model
of an individual geometric object at a specific resolution. Due to
our multiresolutional dataset, each object is represented by multi-
ple nodes. All nodes for a given object share a common position

ei

Dest{ei}Src{ei}
nj nk

Figure 2: Edgeei represents the data required to decode node
Src{ei} given that nodeDest{ei} is already resolved.

in theX dimension. However, they each have different resolution
levels and are therefore positioned differently in theL dimension.
In Figure 1(b), we illustrate three geometric objects at different po-
sitions in the scene.

4.2.3 Edges
Data dependencies between nodes are represented by directed

edges. The set of all edges is noted asE. An edgeei ∈ E has both
a source nodeSrc{ei} and a destination nodeDest{ei}. An edge
in our abstraction both expresses data dependence and corresponds
to the specific bytes of information needed to resolveSrc{ei}
given that we have already resolvedDest{ei}. An edge there-
fore expresses the syntactic relationship between a pair of nodes as
depicted in Figure 2.

Not all nodes are dependent on data from other nodes for resolu-
tion. The data required to resolve a node without any prior knowl-
edge is expressed via aself-edge. A self-edge is defined as an edge
ei whereSrc{ei} = Dest{ei}. We define the set ofbase nodes,
B ⊂ S, as the set of all nodes with a self-edge.

Edges are assigned to a specificcluster, Clust{ei}. While each
cluster may have several assigned edges, each edge belongs to ex-
actly one cluster. We discuss clusters in Section 4.2.4.

In our example application, edges represent dependencies be-
tween different resolution models of the same geometric object, as
shown in Figure 1(c). The model with the greatest error is fully en-
coded without any data dependencies. This leads to the inclusion
of a self-edge for nodes representing an object at the coarsest level.
The predictive relationships between nodes are expressed through
directed edges pointing from higher resolution nodes to lower res-
olution nodes.

4.2.4 Cluster
We define aclusteras a group of one or more edges. Each cluster

ci contains a listEdges{ci} of all edges assigned to it. In addi-
tion, a cluster maintains a cost estimateCost{ci} which measures
the cost of loading. When performing load operations, the data as-
sociated with all edges inEdges{ci} is treated as an atomic unit.
Adaptation of the datastream is therefore performed at cluster-level
granularity.

In our sample application, we need to load each resolution of
each object independently. We therefore assign every edge to its
own unique cluster.

4.2.5 Point of Interest and Prediction Vector
An adaptive application must maintain apoint of interestwhich

moves withinN. This point is part of a largerprediction vector, ~p,
which contains both the current point of interest and zero or more
predictions of future interest points. Each vector entry~p[i] pairs a
pointPos{~p[i]} in U with a confidence valueCon{~p[i]} ∈ (0, 1].
The point of interest is noted as~p[0]. We restrictCon{~p[0]} = 1
indicating full confidence in the position of the current point of
interest.

Our simplified example uses a prediction vector of length one
where only~p[0] is defined. By definition,Con{~p[0]} = 1. The
static resolution level value,l = 0, and the user’s current position
in the scene,x ∈ X, are used to definePos{~p[0]} = (x, 0). The
prediction vector is illustrated in Figure 1(d) as a diamond marker.

Variable Description

U Utility Space
Mi ⊂ U Media Subspaces
N ⊂ U Navigable Subspace

S Set of all nodes
ni A node from the setS

Pos{ni} The position ofni

State{ni} The state ofni

Arr{ni} The list of arriving edges atni

Dep{ni} The list of departing edges atni

B The set of base nodes (nodes with a self-edge)
A The availability front (all nodes in stateAvailable)
E Set of a edges
ei An edge from the setE

Src{ei} The source node forei

Dest{ei} The destination node forei

Clust{ei} The cluster to whichei belongs
C The set of all clusters
ci A cluster from the setC

Edges{ci} The list of edges inci

Cost{ci} The cost estimate forci

~p The prediction vector
~p[i] Theith element of~p

Pos{~p[i]} The position of~p[i]
Con{~p[i]} The confidence value for~p[i]

α The set of scale dimensional factors
αi ∈ α An individual scale factor

Table 1: The parameters of our representation graph model.

4.3 State Transitions
Each node in our representation abstraction exists in a particu-

lar state. We express the process of adaptation through node state
transitions over time. In this subsection, we outline the overall state
space, discuss fundamental transition invariants, and present the set
of allowable state transitions.

4.3.1 State Space
Each node in our representation is assigned to one of four pos-

sible states. A node’s state may change over time, but it has just
a single state at any particular moment in time. A node’s state re-
flects the current status of the information represented by that node.
The set of possible states is ordered to allow relational comparisons
between nodes. In increasing order, the valid states are as follows:

• Idle: The information for this node is not resolved. Nor is it
possible to resolve without resolving some other node first.

• Available: The information for this node is not resolved.
However, it is possible to resolve without resolving some
other node first.

• Active: The information for this node is in the process of
being resolved.

• Resolved: The information for this node is resolved.
We call the set of available nodes theavailability front and note

it asA. The availability front has special significance during utility
evaluation and is discussed in more detail in Section 4.4.

4.3.2 Invariants
There are three invariant conditions which are guaranteed to be

true at all times. Following any node’s change in state, these invari-
ants must be enforced. Only state transitions which maintain these
conditions are considered legal in our framework.

Self-Edge Invariant: A node with a self-edge may not be idle.
Idle nodes require the resolution of other nodes prior to being re-
solved. A self-edge indicates that a node can be resolved without
dependencies. Therefore such a node can never be idle.

Coherent Front Invariant: A node’s state is less than or equal
to the highest state among the set of predictors. This rule maintains

AvailableIdle ResolvedActive

D

A B C

Available

H

Idle Active ResolvedE F G

I
J

Figure 3: Promotion Transi-
tions

AvailableIdle ResolvedActive

D

A B C

Available

H

Idle Active ResolvedE F G

I
J

Figure 4: Demotion Transi-
tions

a coherent front through the representation graph based on the data
dependence relationships expressed by edges.

Active Predictor Invariant: A node can not be idle if it has one
or more predictors that are in stateActive or greater. This implies
that anIdle node must transition toAvailable upon the transition
of any predictor toActive.

4.3.3 Valid Transitions
The state of each node can change over time by eitherpromotion

to a higher state ordemotionto a lower state. In this subsection, we
describe the set of valid transitions. For clarity, we introduce the
notationTrans(ni, StateA, StateB) to mark a transition of node
ni from StateA to StateB. We further classify transitions into
two categories.Primary transitionsoccur as a direct result of an
adaptation operation. Following a primary transition, a number of
secondary transitionsmay ripple through the representation graph
as invariants are reinforced.

Promotion Transitions. There are four valid promotion transi-
tions, as shown in Figure 3. Nodes in theIdle state can be pro-
moted along one of two paths. First,Trans(ni, Idle, Available)
occurs as a secondary transition when one ofni’s predictors is pro-
moted toActive. The other promotion transition fromIdle is
Trans(ni, Idle, Active) which occurs as a secondary transition
when a cluster containing any of the edges inDep{ni} is loaded.

The third promotion transition isTrans(ni, Available, Active).
This is a primary transition and can occur during a load opera-
tion when anAvailable node is targeted for resolution along some
edge. This transition can trigger a number of secondary transitions
due to the Active Predictor Invariant and can even occur as a sec-
ondary transition itself.

The final promotion transition isTrans(ni, Active, Resloved).
This is a primary transition and does not trigger any secondary
transitions. It occurs when a node receives enough data to be be
resolved and is no longer actively receiving data.

Demotion Transitions. Unlike promotion, there are no restric-
tions on demotion. This is illustrated in Figure 4 which shows that
all six possible paths are valid. Demotion transitions are needed
when data is flushed from a system. Typically, data is stored in a
cache with limited space. As new data arrives, a cache management
algorithm must decide which data can be evicted to make room for
the new information. Demotion transitions are also needed to sup-
port the early termination of ongoing load operations.

A resolved nodeni can transition to any of the three other states.
The specific transition is determined by the state invariants. For
example,Trans(ni, Resolved, Active) is performed if a cluster
containing any of the edges inDep{ni} is currently loading. Oth-
erwise,ni may transition to eitherIdle or Available. The specific
transition to occur is determined by the Coherent Front Invariant.

The demotion transitions presented so far are primary transitions
that occur as a result of flushing a node’s data or unloading a clus-
ter. The remaining demotion transitions are secondary transitions
and occur as side effects as the state invariants are reinforced. Fol-
lowing any demotion transition of nodeni, the nodes linked toni

through edgesArr{ni} must all be checked to ensure compliance
with the state invariants.

4.4 Supporting Utility and Cost Evaluations
Both the utility of information and the cost of acquiring it are

application specific properties. Our framework provides general
tools to make these evaluations but leaves the formulation of spe-
cific metrics to the application designer. To evaluate theUCR, an
application must first define two metrics. The first metric measures
the utility of an individual node. The second metric determines the
cost of resolving that node.

4.4.1 Utility Metric
We define an abstract utility metric,UtilMetric, used to evalu-

ate the usefulness of each nodeni ∈ A. UtilMetric evaluates the
utility of a single node as a function of the node itself, the overall
utility space, the set of all nodes, and the prediction vector. The
implementation of this metric must be defined by the application to
meet system-specific needs.

For example, in our sample application we need a metric that
reflects our need for both low-error and nearby models. This can
be achieved by computing the inverse of the distance between the
~p[0] and a nodeni as defined in Equation 1. Using this metric,
nodes closer to the point of interest are assigned a higher utility.
This behavior is shown by the shaded region in Figure 1(d).

UtilMetric(ni,U, S, ~p) =
1

Dist(ni, ~p[0])
(1)

4.4.2 Cost Metric
We define an abstract cost metric,CostMetric, used to evaluate

the minimum cost of resolving a nodeni. A node can be resolved
through any edgeei ∈ Dep{ni} whereDest{ei} > Available.
For ei, the cost is typically a property of the associated cluster
Clust{ei}. CostMetric evaluates the utility of a single node
as a function of node itself.

The cost metric in our running example is simply the number of
bytes associated with the node in question. In our representation,
each node has exactly one departing edge. We can therefore define
define the cost metric as shown in Equation 2.

CostMetric(ni) = Cost{Clust{ei}}|ei ∈ Dep{ni} (2)

4.4.3 Utility-Cost Ratio
A utility-cost ratio function, as described in Section 3.2, is used

is used to drive adaptation. Given our utility and cost functions, we
define the functionUCR in Equation 3.

UCR(ni,U, S, ~p) =
UtilMetric(ni,U, S, ~p)

CostMetric(ni)
(3)

4.5 Adaptation Operations
We support two classes of adaptation operations. First, the load-

ing and unloading of clusters is performed through theUCR met-
ric and state transitions. Second, the management of dimensional
tradeoffs is implemented through scaling operations on the utility
space. In this section, we describe these operations in more detail.

4.5.1 Load and Unload Operations
At runtime, an application will be busy loading a working set

of clusters. The size of this set is determined by the application’s
budget and the cost associated with the loading clusters. An appli-
cation must manage the working set to ensure that the must useful
information is being loaded and supplied to the system.

Clusters are added to the working set through theLoad(ni) op-
eration. Typically, a system loads the nodeni with the highest
UCR value and subscribes to lowest cost cluster associated with
Dep{ni} that would resolveni.

Clusters are removed from the working set in one of two ways.
First, a cluster is removed from the set when it is completely loaded.
When all the data for a cluster has arrived, the cluster is removed
from the working set and communication resources can be reallo-
cated to a new cluster.

Second, a cluster can be removed prior to resolution through
Unload(ni). This signals that the active cluster forni is no longer
needed and can be removed from the active cluster set. All active
nodes associated with the cluster must be dropped fromActive to
eitherIdle or Available depending on the state of the representa-
tion graph.

The adaptation logic in a typical application will repeatedly eval-
uate theUCR metric on all nodesni ∈ A to determine the best
available node. At the same time, theUCR metric will be evalu-
ated on the set ofActive nodes to determine the worst active node.
If the best available node has a higherUCR value than the worst
active node, then the active node is unloaded in favor of the best
available node. Otherwise, the working set remains the same.

4.5.2 Managing Dimensional Tradeoffs
Our representation abstraction maintains a set of nodes located

within a multidimensional utility spaceU. We express the utility
of an individual nodeni as a geometric function ofPos{ni} in U.
We can therefore manage the tradeoffs between dimensions in our
utility space by performing scaling operations on individual dimen-
sions. We define the set of scale factors asα = {α1, α2, · · · , αn},
wheren = |U|.

Geometrically scalingU in a specific dimension will result in
biasing theUtilMetric evaluation and alter the importance of a
specific dimension. The relative importance between dimensions
is expressed through these scaling operations. An application must
maintain theα factors for each dimension ofU and adjust them to
match the application requirements as they change over time.

5. APPLICATION CASE STUDIES
The benefit of an abstract adaptation framework is the applicabil-

ity of a common set of functions and representations across a large
set of adaptive applications. In this section, we present a series of
case studies where we apply our framework to concrete adaptation
problems. We frame each application as a spatial adaptation prob-
lem inside a multidimensional utility space. Our examples demon-
strate both cross-media adaptation and high-dimensional utility
spaces. We examine a multicast video streaming application, a 3D
geometry system, and a image-based rendering streaming system.
5.1 Video Streaming

Quality adaptation for audio and video has often been achieved
using layered representations [18]. In this case study, we con-
sider a multicast-based application with independent video and au-
dio streams. The distribution of each layer-encoded stream is split
across multiple clusters.

Using our adaptation model, we define a utility space of three
dimensions. There is a video layer dimension,V , an audio layer
dimension,A, and a single relational dimension to facilitate inter-
media tradeoffs,Γ. This forms two one-dimensional media sub-
spaces,M1 = V andM2 = A, and a utility spaceU = (V ×
A × Γ). We set treat bothV andA as static dimensions, leaving
N = ∅. The lack of a navigable subspace implies that~p is constant
throughout the adaptation process and is located at the origin ofU.

Each layer is mapped to a node, implying that adaptation is per-
formed by adding or dropping layers. The coding dependencies
between layers are represented by edges. Each edgeei belongs
to an independent cluster corresponding to a multicast group. The
representation graph and utility space for this design are shown in

V: Video Layer

 Γ
: R

el
at

io
na

l D
im

en
si

on

A: A
udio Layer

Figure 5: Three-Dimensonal
Video Streaming Utility Space

X: Position Along X Axis

L:
 R

es
ol

ut
io

n
Le

ve
l

Figure 6: Utility Space for Ge-
ometric Application

Figure 5.
Our utility metric is a simple inverse Euclidean distance metric

between a nodes position and the origin ofU. Our cost metric is the
bitrate of transmission for the corresponding multicast group. The
streaming application manages the tradeoffs between audio layers
and video layers by changing the positions ofM1 andM2 within
the relational dimensionΓ.

5.2 Geometric Models
Suppose we have a 3D streaming application with a scene com-

posed of a collection of geometric objects. For each object, we
have a series of levels-of-detail (LOD) that represent the object at
various degrees of accuracy. We assume that the base LOD for
each object is fully encoded while more accurate approximations
are encoded predictively.

Using our adaptation model, we define a five dimensional utility
spaceU = (X × Y × Z × L×∆) comprised of the three spatial
dimensions(X, Y, Z), the resolution level dimension(L), and a
geometric size dimension(∆). The navigable subspace isN =
(X × Y ×Z). BothL and∆ are static dimensions. Because there
is only a single media type, there is just one media subspace defined
asM1 = U.

We map each individual LOD to a single node because adapta-
tion is performed by managing specific LODs. We represent the
encoding dependencies between different LODs of the same geo-
metric object with edges. We illustrate a 2D subset of the overall
representation graph in Figure 6.

Each edge is assigned to a different cluster to allow access to
each LOD individually. We setCost{ci} equal to the size in bytes
of the corresponding LOD.

We define a prediction vector~p of length two. The first entry,
~p[0], is the point of interest. In the navigable subspace,Pos{~p[0]}
is determined by the application and is based on the virtual cam-
era’s position. We use~p[1] to represent the gaze direction and speed
for the user under the assumption that any future movement will
likely be in that same direction.

We implementUtilMetric as a modified inverse distance mea-
sure between~p[0] and a nodeni in spaceU after it has been scaled
by the appropriateα scale factors. Once the scaled distance has
been computed, we bias the utility based on the dot product be-
tween the view direction and the object direction (see theδ factor
below).

UtilMetric(ni, ~p) = 1
δσ

(4)

δ = Dist(αPos{ni}, αPos{~p[0]})
σ = 2 + (|αPos{ni} − αPos{~p[0]}| · |αPos{~p[1]}|)

5.3 Image-Based Rendering
In the previous examples, we discussed the potential use of our

framework in the context of two hypothetical applications. This

third example illustrates a real-world utilization of our adaptation
policies in a working prototype designed to deliver image-based
rendering environments to large user groups [9]. In this subsec-
tion, we discuss the adaptive design for our prototype. We present
experimental results in Section 6.

Our experimental prototype supports remote access to Sea of Im-
ages [1] datasets, which consist of several thousand high resolution
images annotated with camera pose information. The camera posi-
tion for all images is restricted to a plane at eye-level. During re-
construction, a virtual image is synthesized by interpolating across
the three images closest to a virtual eyepoint.

In our prototype, we defined a five-dimensional utility space,
U = (X × Y × Θ × ∆ × Γ), corresponding to the multidimen-
sional representation we developed for the application. There are
three navigable dimensions,N = (X × Y × Θ). Two dimen-
sions,(X, Y), define the plane containing the set of camera posi-
tions. TheΘ dimension corresponds to the image view direction
measured as an angle from the+X axis. There is only one media
subspaceM1 = U.

The remaining dimensions are static dimensions. Our represen-
tation uses a JPEG2000-based multiresolution image representa-
tion and organizes the set of images in a spatial quadtree hierarchy
which arranges the images into a progressive order in terms of spa-
tial density withinN. We define∆ as the spatial density dimension
andΓ as the image resolution dimension.

We segment our dataset into groups of images by first partition-
ing the dataset using a regular grid inN. Within each partition, we
further divide the data along the∆ andΓ dimensions.

We map each of these divisions to a node within a representa-
tion graph. For compression, our representation introduces inter-
element dependencies within a partition which are represented with
edges. Each edge belongs to its own cluster andCost{Clust{ei}}
is set equal to the number of bytes in the clusterClust{ei}. The
prediction vector and utility metric are identical to those used in the
geometric model example.

The similarity inUtilMetric across all three case studies speaks
to the power of a common adaptation abstraction. The same mech-
anisms and metrics can be used and reused across a wide range of
applications. The individual application requirements are simply
mapped to the available controls exposed by our framework.

6. EVALUATION
We performed several experiments to evaluate the performance

properties of our proposed adaptation framework. We implemented
a working prototype for a remote rendering engine for the Sea of
Images (SOI) algorithm. The prototype was designed to support
scalable streaming for large heterogeneous user groups [9]. We
utilize the data representation and metrics defined in Section 5.3.
We map each cluster to a unique transmission channel and data
adaptation is performed by managing a working set of channels.

We tested system performance for our prototype under a vari-
ety of network conditions using the Dummynet network emulator
[19]. For all experiments, we emulated a single user navigating a
predefined path through a static image database consisting of 1,947
panoramic images. Each image has a full360◦ field-of-view and a
resolution of2047× 512. The raw size of the database is approxi-
mately six gigabytes.

Every experimental session lasted for 330 seconds and followed
an identical path though the digitized environment. All experiments
used a fixed channel bandwidth of 10,000 Bytes/sec. We refer read-
ers to [9] for a more detailed description of our prototype and exper-
imental configuration, and for the results of additional experiments.
In the remainder of this section, we discuss the Area Factor quality

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

15

Time Step (5 per second)

B
an

dw
id

th

Loss Rate And Bandwidth Adaptation

←
← ←

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

1.5

2

2.5

Time Step (5 per second)

Lo
ss

 R
at

e

←

← ←

Figure 7: Bandwidth adaptation in response to estimated loss.

metric and present results from our experiments.

6.1 The Area Factor Metric
The Area Factor (AF) is the quality metric used in our experi-

ments. TheAF metric is derived from the SOI algorithm’s use of
image triplets. For any synthesized viewpoint, we can identify two
triplets: theideal triplet and theavailable triplet. The ideal triplet
consists of the three images closest to the viewpoint using the entire
database as input. The available triplet consists of the three images
closest to the viewpoint available at the time of rendering.

The image positions of each triplet forms a triangle. We measure
the quality of reconstruction by computing AF as the ratio of the
areas of these triangles. The range forAF is restricted toAF ≥ 1.
Ideal reconstruction is represented byAF = 1. Larger values of
AF signify greater disparity between the ideal and available trian-
gles, implying poorer reconstruction quality.

6.2 Adaptation to Available Bandwidth
To test our framework’s adaptive performance to changing net-

work conditions, we measured both the size of the active cluster
set in channels and the estimated loss rate for a complete session.
During this session, we set the available bandwidth to 100,000
Bytes/sec. The results are plotted in Figure 7.

Client bandwidth hovered at about 10 channels. During the ses-
sion, there were three loss events that caused decreases in the clus-
ter set size. A decrease is triggered by the detection of loss rates
above a threshold for an extended period of time. The three loss
events are highlighted in the figure by arrows. Note that extended
spikes in the loss rate were matched by drops in bandwidth. Follow-
ing extended periods of relatively low loss, the network is probed
for additional bandwidth by increasing the cluster set size.

6.3 Quality and Bandwidth
The target user population is heterogeneous in nature. Not only

will users navigate the digitized space independently, the user pool
will contain both high and low bandwidth clients. We tested our
framework’s performance over a number of different bandwidth
connections. We computed the averageAF value for each ses-
sion and plotted it against the available bandwidth. As bandwidth
increases,AF decreases, signifying improved quality at higher net-
work capacities. This trend is evident in Figure 8.

The observed behavior shows that our framework yields improved
quality for higher-speed connections. Adaptation is made possible
by the multiresolutional utility space and theUCR metric allows
for graceful quality degradation by intelligently allocating available
bandwidth to the most useful data.

6.4 Quality and Latency
We simulated various levels of subscription latency by adding

a fixed delay to all subscribe requests. We varied this additional
delay from 20ms to 750ms. The delay values are in addition to any
other network delays such as queue time. At each configuration, we
computed the averageAF for the session. The results are shown in
Figure 9.

The results show thatAF trends upward as subscription latency
grows, signifying a drop in reconstruction quality. There are two
reasons for this behavior. First, longer subscription latencies make
adaptation harder by increasing the time for subscribe requests.
Second, the system adjusts theα factors to compensate for longer
latencies by increasing the importance of the navigable dimensions.

7. CONCLUSIONS AND FUTURE WORK
We have presented a general framework for multidimensional

adaptation. The framework is applicable to a large class of adaptive
applications with multiple media types and adaptive dimensions.

We defined an abstract graph-based data representation that ex-
plicitly models multidimensional and multiresolutional properties.
Our abstraction can express both semantic and syntactic data rela-
tionships. We discussed graph-based state transitions as a mecha-
nism for maintaining system state and data availability.

Our framework exports an interface to allow application-specific
conditions to be incorporated into adaptive behavior. This is sup-
ported via dimensional scaling operations, the prediction vector,
and customUtilMetric andCostMetric metrics.

We have demonstrated the applicability of our adaptive frame-
work to several media types. This includes both conceptual design
and a real-world prototype designed for remote access to image-
based models.

Using a common, generic framework allows a system designer
to reuse the basic adaptation mechanisms and metrics by mapping
their data and application requirements to the exposed interface. By
posing the problem as a geometric exercise, the framework allows
a simpler conceptual vision of adaptation for complex systems by
viewing it as a spatial measure.

There are several avenues for future work. We would like to de-
velop a common set ofUtilMetric andCostMetric metrics to
serve as a toolbox for system designers. In the same spirit, we plan
to develop an open-source middleware library to facilitate more
timely system implementation. This will include a defined API for
adaptive applications.

We are also interested in exploring systems that require high-
dimensional adaptive behavior. This includes our image-based ren-
dering prototype and teleimmersive systems that stream several in-
dependent multiresolutional media objects of variable complexity.

8. REFERENCES
[1] D. G. Aliaga, T. Funkhouser, D. Yanovsky, and I. Carlbom. Sea of

images. InProc. of IEEE Visualization, 2002.
[2] M. Beynon, R. Ferreira, T. M. Kurc, A. Sussman, and J. H. Saltz.

Datacutter: Middleware for filtering very large scientific datasets on
archival storage systems. InIEEE Symposium on Mass Storage
Systems, pages 119–134, 2000.

[3] S. Boll, W. Klas, and J. Wandel. A cross-media adaptation strategy
for multimedia presentations. InProc. of ACM Multimedia, 1999.

[4] S. Bowers, L. Delcambre, D. Maier, C. Cowan, P. Wagle,
D. McNamee, A.-F. L. Meur, and H. Hinton. Applying adaptation
spaces to support quality of service and survivability. InDARPA
Information Survivability Conference and Exposition, 2000.

[5] S. Chatterjee, J. Sydir, B. Sabata, and T. Lawrence. Modeling
applications for adaptive qos-based resource management. InProc. of
IEEE High Assurance Systems Engineering Workshop, 1997.

40 60 80 100 120 140 160 180 200
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3
Area Factor vs. Bandwidth

Bandwidth (KBytes/Sec)

A
re

a
Fa

ct
or

Figure 8: Adapting quality
in response to changing band-
width availability.

0 100 200 300 400 500 600 700 800
2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7
Area Factor vs. Latency

Latency (ms)

A
re

a
Fa

ct
or

Figure 9: Adapting quality in
response to changing latency
estimates.

[6] D. Cohen-Or, Y. Chrysanthou, and C. Silva. A survey of visibility for
walkthrough applications.SIGGRAPH Course Nodes # 30, 2001.

[7] L. D. Floriani and P. Magillo. Regular and Irregular Multi-Resolution
Terrain Models: A Comparison. InProc. of 10th ACM International
Symposium on Advances in Geographic Information Systems
(ACM-GIS’02), pages 143–148, 2002.

[8] T. Funkhouser and C. Sequin. Adaptive display algorithm for
interactive frame rates during visualization of complex virtual
environments. InProc. of ACM SIGGRAPH, 1993.

[9] D. Gotz and K. Mayer-Patel. A framework for scalable delivery of
digitized spaces.To Appear in the International Journal on Digital
Libraries. Special Issue on Digital Museums.

[10] H. Kanakia, P. Mishra, and A. Reibman. An adaptive congestion
control scheme for real-time packet video transport. InProc. of ACM
SIGCOMM, 1993.

[11] E. C. Lamar, B. Hamann, and K. I. Joy. Multiresolution techniques
for interactive texture-based volume visualization. InProc. of IEEE
Visualization, 1999.

[12] P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N. Faust, and
G. Turner. Real-time continuous level of detail rendering of height
fields. InProc. of ACM SIGGRAPH, pages 109–118, 1996.

[13] D. Luebke. A developer’s survey of polygonal simplification
algorithms.IEEE Computer Graphics and Applications, pages
24–35, May 2001.

[14] M. McIlhagga, A. Light, and I. Wakeman. Towards a design
methodology for adaptive applications. InProc. of ACM/IEEE
International Conf. on Mobile Computing and Networking, 1998.

[15] C. Policroniades, R. Chakravorty, and P. Vidales. A data repository
for fine-grained adaptation in heterogeneous environments. In
International Workshop on Data Engineering for Wireless and
Mobile Access, 2003.

[16] R. S. Ramanujan, J. A. Newhouse, A. A. M. N. Kaddoura, E. R.
Chartier, and K. J. Thurber. Adaptive streaming of mpeg video over
ip networks. InProc. of the IEEE Conference on Computer
Networks, 1997.

[17] R. Rejaie, M. Handley, and D. Estrin. Quality adaptation for
congestion controlled video playback over the internet. In
Proceedings of ACM SIGCOMM, pages 189–200, 1999.

[18] R. Rejaie, M. Handley, and D. Estrin. Layered quality adaptation for
internet video streaming.IEEE Journal on Selected Areas of
Communications (JSAC), Winter 2000. Special issue on Internet
QoS.

[19] L. Rizzo. Dummynet: A Simple Approach to the Evaluation of
Network Protocols.ACM Computer Communication Review,
27(1):31–41, 1997.

[20] L. Rowe and B. Smith. A continuous media player. InNetwork and
Operating System Support for Digital Audio and Video, 1992.

[21] E. Teler and D. Lischinski. Streaming of complex 3d scenes for
remote walkthroughs. InProc. of Eurographics, 2001.

[22] G. Varadhan and D. Manocha. Out-of-core rendering of massive
geometric environments. InProc. of IEEE Visualization, 2002.

[23] J. Walpole, C. Krasic, L. Liu, D. Maier, C. Pu, D. McNamee, and
D. Steere. Quality of service semantics for multimedia database
systems.Database Semantics: Semantic Issues in Multimedia
Systems, 1999.

