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ABSTRACT
Sensemaking tasks require that users gather and com-
prehend information from many sources to answer com-
plex questions. Such tasks are common and include, for
example, researching vacation destinations or perform-
ing market analysis. In this paper, we present an algo-
rithm and interface which provides context-based page
unit recommendation to assist in connection discovery
during sensemaking tasks. We exploit the natural note-
taking activity common to sensemaking behavior as the
basis for a task-specific context model. Our algorithm
then dynamically analyzes each web page visited by a
user to determine which page units are most relevant
to the user’s task. We present the details of our recom-
mendation algorithm, describe the user interface, and
present the results of a user study which show the ef-
fectiveness of our approach.
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INTRODUCTION
The World Wide Web provides a rich environment for
navigating information. Dramatic improvements in search
and retrieval technologies have made it extremely easy
for people to find a list of web pages most relevant to
their interests. For example, finding the web page for a
newly released movie is as simple as entering the title
into any search engine. However, even for very simple
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tasks, locating a specific web page is most often just the
first step in a much longer process.

For example, consider information seeking tasks where
the goal is to locate a specific piece of information which
is clearly understood by the user (e.g., the location of a
restaurant). First, the user must perform a web search
to locate an appropriate web page. Second, after nav-
igating to the identified web page, the user must scan
the page’s content to understand its logical structure
(e.g., “What information is contained on this restau-
rant’s web page and how is it organized?”). Third, the
person must identify the appropriate section of the web
page (e.g., “I think I’ll find the address in the directions
section.”). Only then can the user perform the final
step in the process: reading the detailed content of the
page to locate the specific information of interest (e.g.,
“The directions end at 101 Main Street.”).

Search engines assist only with the very first stage of
this process. Meanwhile, few tools have been designed
to help locate information after arriving at a specific
web site. Yet studies of user behavior on the web show
that people actually spend just a small fraction of their
effort searching for web pages. Instead, users spend
roughly 75% of their time in the post-search phase of
looking through individual web pages or sites to find
the specific content that is the target of their task [17].

The post-search effort to find relevant information within
a web page is even more onerous during sensemaking
tasks where users must make sense out of potentially
conflicting information scattered across many locations.
Such tasks are typically longer running and more com-
plex than information seeking tasks, requiring users to
collect fragments of information from multiple sources
and discover connections between them. This process
of “connecting the dots” is a difficult challenge in which
users must mentally compare the content from a page
they are viewing with the set of information found dur-
ing previous stages of their task. Sensemaking tasks
are quite common and include both personal (e.g., re-
searching vacation destinations and choosing where to
buy a home) and business (e.g., business intelligence
and market analysis) activities.
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For example, consider Alice who is relocating to a new
city after a promotion at work. She begins to plan her
move by searching the web for information (e.g., the
quality of schools, neighborhood crime rates, and typ-
ical home prices). She notes her findings using a web-
based note taking tool such as Google Notebook [8].
Alice continues to explore additional issues (e.g., child
care options, health care providers for her husband’s
rare disease) over dozens of follow-up web sessions span-
ning several weeks. As her research progresses, she com-
bines information found at various stages into a com-
prehensive plan for her move. For instance, she vets a
web page of potential day care providers against a list
of towns in which she previously found apartments for
rent. Then, while looking at a hospital’s list of special-
ists for her husband’s condition, Alice by chance notices
a serendipitous connection. On the same street as the
hospital is a day care center and an apartment complex
in her price range. With this lucky discovery, Alice de-
cides that this is where she will live and focuses her
future research on this key town.

Existing search engines and note taking tools can help
users like Alice find specific web pages and save infor-
mation for future review. However, these are not the
most most arduous parts of Alice’s task. Rather the
bulk of her time is spent reading through each newly
visited web page to find any relevant connections it
may have with the information in her notes. Due to
the volume of information and the length of the task,
this can be difficult even when Alice is looking for a
specific connection (e.g., finding day care and housing
within the same town). It is even more challenging to
discover serendipitous connections (such as Alice’s dis-
covery of a shared street name) that could go easily
overlooked. Yet finding these connections is the essence
of sensemaking behavior. Therefore, an effective tool
for web-based sensemaking tasks must meet the follow-
ing requirements:

• Site Independence: A sensemaking tool must be
independent of any specific site or content provider
to allow cross-site connection discovery.

• Note-Taking Functionality: A sensemaking tool
should allow for the collection of information frag-
ments into a task-specific workspace to help users
organize their findings across multiple sessions and
sites.

• Assistance in Connection Discovery: Most crit-
ically, a sensemaking tool should assist the user in
performing the difficult process of uncovering connec-
tions between their notes and what is currently being
explored in their browser.

We know of no existing tool that satisfies these require-
ments. Therefore, we have developed a smart web-
browsing system called the InsightFinder which pro-
vides traditional note-taking capabilities augmented with
a novel technique for context-based page unit recom-

mendation. Our algorithm dynamically analyzes each
visited web page to determine the most task-relevant
fragments of content. We exploit the natural note-
taking activity common to sensemaking behavior as the
basis for our task-specific context model. As a result,
our algorithm can detect both intended and serendip-
itous connections between a visited web page and the
user’s task context.

In this paper, we describe our system’s architecture and
user interface design, as well review the algorithm used
to provide dynamic context-based page unit recommen-
dations. In addition, we present the results from a user
study that show that our tool can effectively identify
content-relevant page segments in comparison to hu-
man judgments of relevance. Moreover, the study find-
ings show that participants using the InsightFinder can
identify relevant content within a web page significantly
faster than those using a traditional browser.

BACKGROUND
Our work is closely related to several areas of research.
These include sensemaking tools, web-based informa-
tion tasks, and personalization. Here we survey a sam-
pling of this related work.

Sensemaking Tools
Sensemaking has been a focus of HCI research for many
years. In the 1990s, researchers recognized the impor-
tance of sensemaking behavior in the design of knowl-
edge representational tools, information retrieval sys-
tems, and user interfaces [23]. Closely related, infor-
mation foraging theory [21] was proposed to help un-
derstand how users adapt to technology when perform-
ing information seeking and consumption tasks. This
area of study has recently received renewed attention
with a focus on the intelligence analysis domain [11,
22] and the emerging field of visual analytics [29]. As
a result, a number of tools have emerged for organiz-
ing hypotheses, staging discovered information, and il-
lustrating conclusions. These range from brain storm-
ing tools [18] to criminal investigation management [14].
Related efforts in visual analytics have led to systems
that closely integrate these techniques with visualiza-
tion tools [10, 27, 31].

Sensemaking on the Web
The broad availability of information on the web makes
it a natural resource for sensemaking activity. As a re-
sult, many web-based tools have been developed for this
purpose. Most basic are the standard web browser fea-
tures of bookmarking, the back button, and browsing
history. Intelligent approaches can be used to extend
these basic tools. For example, Magpie [5] extracts se-
mantics from web content to enable enriched manage-
ment of browsing history.

In other work, task-centric browser extensions have been
developed that let users create per-task collections of
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discovered information. Some of these (e.g. [15]) pro-
vide task-based bookmarks by capturing entire web pages.
Others tools (e.g., [1, 8, 26]) support more general note-
taking capabilities. While the InsightFinder provides
similar note-taking capabilities, it goes further by ac-
tively exploiting a user’s notes for recommendation. Per-
haps most similar is the ScratchPad [9], a tool which
uses captured notes to improve re-visitation by recom-
mending previously found information. In contrast, the
InsightFinder exploits a user’s notes to recommend con-
tent from within a newly visited web page.

Personalization and Recommendation
Exploiting user behavior on the web has become an im-
portant topic in recent years. For instance, the wisdom
of crowds can be exploited in several ways including in-
cluding social bookmarking [12] and tagging [6]. How-
ever, a critical aspect for sensemaking is the unique
circumstance of an individual’s progress on a specific
task, not just the consensus behavior of a crowd. The
InsightFinder is therefore more closely related to efforts
in personalization, including a large body of work on
personalized search that has used implicit (e.g., [3, 28])
or explicit (e.g., [7, 30]) user behavior to improve the
set of returned results. However, these tools do nothing
to help in the post-search phase which we target in our
work. In contrast, ScentTrails [19] does assist in post-
search navigation, but it is limited to hyperlinks and
requires explicit search terms to entered by the user.

THE INSIGHTFINDER
The InsightFinder is a smart web-browsing system that
assists in connection discovery during sensemaking tasks
by providing context-based page unit recommendations.
The InsightFinder allows users to capture information
they find while researching a particular topic within
a notebook-like sidebar. The captured information is
then used to allow a user to re-access their stored in-
formation (e.g., as with traditional bookmarks), as well
as to facilitate real-time recommendations of relevant
page units during the user’s future browsing activity.

This section begins with a description of the Insight-
Finder’s architecture and design philosophy. It then de-
scribes the system’s user interface and the underlying
context model used to represent the information cap-
tured in a user’s notes. Next, it describes the page
segmentation algorithm that determines the set of se-
mantic page units from which recommendations should
be generated. Finally, it describes the relevance com-
putation algorithm that calculates the relevancy of each
page unit with respect to the user’s task context.

Overall Architecture and System Design
The InsightFinder has two primary functions. First,
like other note taking tools, the InsightFinder allows
users to store and organize the notes collected during a
sensemaking task. Second, the InsightFinder uniquely
exploits this valuable information as an implicit task
context to provide page unit recommendations which
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Figure 1. The InsightFinder Architecture. The insight
loop is executed when users update their notes. The
exploration loop occurs as users browse the web.

assist during the search for relevant content on newly
visited pages.

The InsightFinder architecture consists of two interac-
tion loops as shown in Figure 1. The insight loop is
triggered directly through the InsightFinder interface,
which provides tools for users to record or organize their
notes. As the user’s notes evolve, the InsightFinder
maintains a context model which represents the user’s
captured data. The exploration loop occurs while users
interact with the normal browser interface. As users
navigate the web, the InsightFinder performs a series of
steps each time a new page is visited. At the conclusion
of both loops, the InsightFinder provides a ranked list
of recommended web page fragments that are most rel-
evant to the content in the user’s notes. To provide this
functionality, the architecture includes modules for in-
terface management, content extraction, context model
management, page segmentation, and relevance compu-
tation.

The Interface Manager module is responsible for co-
ordinating the real-time interaction process whenever a
user enters the insight loop. As a user captures data
from the web browser in his/her notes, this component
updates the tabular presentation used to display the
user’s notes within the InsightFinder interface. At the
same time, the captured data is forwarded to the con-
tent extraction module for further processing. The In-
terface Manager also monitors for other user behavior
(e.g., deleting notes, modifying notes, or reorganizing
notes into different folder structures) to ensure that the
data stored within the system reflects the displayed set
of notes.

The Content Extraction module is responsible for ex-
tracting content (i.e., primary concepts or ideas) from a
data unit. Data units are web page fragments, ranging
from a single word to an entire page. This module is
used in both interaction loops. During the insight loop,
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Figure 2. A screenshot of the InsightFinder system.

data units are called context units because they corre-
spond to fragments of information from the user’s notes.
During the exploration loop, data units are called page
units because they correspond to fragments of a web
page as produced by the page segmentation module.
The extracted content is represented as a bag-of-words
containing a set of meaningful terms selected from the
original text contained within the data unit. Currently,
a simple unigram algorithm is applied to generate the
term set [2]. We clean the textual data by removing
stopwords and collect the remaining terms to form the
final content term set. We are exploring n-gram term
extraction in our future work.

The Context Model Update module is the third and
final module in the insight loop. It is responsible for in-
tegrating the content extracted from the data unit into
the context model data structure. The context model,
defined formally later in this document, is a graph-based
data representation. This module either creates, mod-
ifies, or removes nodes within this graph to reflect a
user’s interaction with his/her notes.

The Page Segmentation module is the first module
in the exploration loop. Whenever a user navigates to
a new web page, this module analyzes the content of
the web page in a background process. This module
analyzes the structure of the web page and partitions it
into a set of smaller fragments called page units. The
goal is to isolate individual content units which contain
information related to a single topic. The page units are
then forwarded to the content extraction module where
they undergo the same cleaning process applied during
the insight loop. However, unlike the insight loop’s con-
text units which are manually created by users, page
units are automatically obtained by segmenting every
web page visited by a user.

Relevance Computation is the final module in the
InsightFinder system. This module uses a relevance
metric to compare the page units extracted from the
currently displayed web page to the system’s context
model which represents to the user’s recorded notes.

Figure 3. Users can record notes by dragging content
fragments (links, images, text, or entire pages) from the
browser to folders in the InsightFinder.

The relevance computation algorithm is part of both
interaction loops. In the insight loop, changes to the
user’s notes trigger a context model update. In re-
sponse, the system re-evaluates the relevance computa-
tion to provide new page unit recommendations based
on the new notes. In the exploration loop, the relevance
evaluation is performed every time a user visits a new
page so that recommendations can be made based on
the new content.

The dynamic nature of our relevance ranking algorithm
is a critical element of the system’s design. Users natu-
rally extend and modify their note-based context mod-
els in the process of completing a sensemaking task. In
response, the relevance value assigned to a particular
page unit will change over time to reflect the evolving
context in which the users are working. This design
allows users to concentrate directly on their task and
record their evolving notes, just as they would with tra-
ditional note-taking technologies. Meanwhile, without
any additional user input, the InsightFinder automat-
ically and dynamically provides context-relevant page
unit recommendations to encourage faster identification
of relevant content.

User Interface
The InsightFinder’s interface is displayed as a web brow-
ser sidebar with two main sections (see Figure 2). The
top section of the sidebar contains a note-taking area
in which users can record and manage found informa-
tion across the web. User notes are organized using a
tree structure which a user can manage to re-organize
and modify entries in his/her notes. New notes or fold-
ers can be created directly by the user via the toolbar.
Users can also save content from visited web pages by
dragging content from the browser as shown in Figure 3.
Notes can be created at various granularities, ranging
from small HTML fragments to entire web pages. Users
can also save individual links, images, or plain text.

Below the note-taking section of the InsightFinder is a
tabular view of recommended page units. This section
of the tool, shown in Figure 4(a), shows a sorted his-
togram based on the degree of relevance for each page
unit. The most relevant page unit from the user’s cur-
rent web page is displayed at the top of the list, and the
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(a) (b)

Figure 4. (a) The InsightFinder presents recommenda-
tions as a ranked list with a histogram of relevance. (b)
Clicking on a recommendation automatically scrolls the
web page and highlights the corresponding content.

the histogram is recomputed with a fresh set of page
units each time a user visits a new web page or alters
his/her notes. Clicking on an item in the list causes
the browser to automatically scroll to the corresponding
web page section. The recommended content is them
highlighted using a red box as shown in Figure 4(b).

Context Model
The InsightFinder allows users to record information at
several levels of granularity and provides tools for the
creation, manipulation, and removal of captured notes.
Underneath the graphical display of the user’s collec-
tion of notes is a graph-based data structure, called the
context model, that mirrors the visual presentation and
augments it with additional information required for
the page unit recommendation algorithm. This section
defines the context model data structure and discusses
several ways in which users can interact with the model.

Context Model Definition
A context model C is a disconnected graph defined by
a set of nodes, NC , and a set of edges, EC . Each node
ni ∈ NC corresponds to a data unit explicitly added
to the InsightFinder by a user. Similarly, each edge
ei ∈ EC corresponds directly to a user-created associ-
ation between data units. Nodes and edges define the
backbone of the context model and all other data is
represented as properties of these primary structures.

Context Model Nodes. Nodes represent atomic units
of information captured within a user’s notes. Each
node ni has several important properties: type, identi-
fier, payload, and content. These properties correspond
to either attributes of the information captured by the
user, or values computed algorithmically by the system.

The type of a node, Type{ni}, is initially assigned dur-
ing the creation of the node and depends upon the type
of information being captured. Instead of simply cap-
turing entire pages, the InsightFinder allows users to
collect information at a much finer granularity. For
example, users can “drag-and-drop” individual links,
images, or text fragments from a web page into the
InsightFinder. Therefore, whenever a drop event is de-

Variable Description

C A context model
NC The set of nodes in C
ni An individual node in the set NC

Type{ni} The type of node ni

ID{ni} The identifier of node ni

Payload{ni} The raw data assigned to node ni

Content{ni} The extracted content assigned to node ni

EC The set of edges in C
ei An individual edge in the set EC

Nodes{ei} The set of nodes connected by edge ei

Table 1. The context model notation.

tected, the InsightFinder analyzes the HTML tags of
dropped data to automatically determine the type. For
complex fragments, the type field may be multi-valued.
For example, dragging an image with links from a web
page into the InsightFinder will create a node with dual
types: image and link. Since the type is a native at-
tribute of the captured data, it is immutable unless the
stored data itself is explicitly modified by the user.

Nodes also have a unique identifier, noted as ID{ni},
which includes a time stamp of when the node was
created. In addition to providing a unique reference
for each node, the identifier can be utilized to build a
chronological view of the user’s activity. As with to the
type field, identifies cannot be modified.

The payload of a node, noted as Payload{ni}, stores
the raw content of the captured information. The spe-
cific data placed in this field depends upon the type of
node. For example, a node with type text will have its
Payload{ni} set to a text string, while a node of type
image will store the actual image data.

The content of a node, noted as Content{ni}, stores
the set of terms extracted by the Content Extraction
Module The source of this data depends directly upon
the type of node. For example, the content for a node
with type text is directly extractable from the payload
field. In contrast, the content for a node of type image
is populated from the image’s ALT attribute in the cor-
responding web page if such a value has been assigned.

Context Model Edges. Context model edges are
created when users group fragments together in their
notes using the folder metaphor provided by the In-
sightFinder. By grouping nodes in folders, users are
implying that there is a common idea or concept shared
among the grouped nodes. For example, a user groups a
set of nodes within a folder named “Sports” to indicate
that all of the captured notes are sports-related.

Within the context model, a folder is represented us-
ing a special type of node which is connected by edges
to all context nodes placed in the folder by the user.
Therefore, an edge is directional and expresses a sub-
sumption relation in which one data unit belongs to a
specific folder. The ordered pair of nodes for edge ei is
defined as Nodes{ei} = {nj , nk} where nj , nk ∈ NC ,
nj and nk are, respectively, a folder and a member node.
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Building Context
The context model is used to represent a user’s notes
as captured during a sensemaking task. The context
model is built dynamically by the InsightFinder system
while the user performs their normal note-taking behav-
ior. When a user begins a new task, the context model
is initialized as an empty graph. The graph then grows
as users record information within the InsightFinder in-
terface while browsing the web as shown in Figure 3.

In addition to adding new information, users can also
manipulate and organize existing objects within the In-
sightFinder to reflect changes as their task evolves. Sim-
ilar to the user’s creation of new notes, note modifica-
tion actions trigger changes within the context model to
ensure that it properly reflects all changes to the user’s
notes. For example, when a specific fragment of data is
removed from a user’s notes, the corresponding context
model node and all associated edges will be deleted.

Other Context Model Interactions
The InsightFinder provides more than basic note tak-
ing capabilities. One additional important feature is the
ability to maintain unique multi-session context mod-
els for each user task. This is especially critical be-
cause a complex sensemaking task is often performed
over the course of several web browsing sessions. This
feature lets users save their work and continue at a later
time. Moreover, task-specific context models (e.g., one
for “Trip to New York” and another for “Investment Re-
search”) allow the InsightFinder to provide task-specific
page unit recommendations.

Another feature provided by the InsightFinder is revis-
itation. Users can easily return to the original page of
captured data by simply dragging the data object from
the InsightFinder into the main browser panel. Simi-
larly, users can open links saved on the InsightFinder
by dragging them to the browser or the URL bar.

Page Segmentation
The InsightFinder is designed to help users quickly lo-
cate information within a web page by recommending
task-relevant page units. This capability relies on ef-
fective segmentation of viewed web pages into represen-
tative page units as performed by the Page Segmen-
tation module. The goal is to segment arbitrary web
pages into individual units which contain semantically
consistent data (i.e., all information in the unit should
share a common topic). We employ a structure-based
algorithm [13] to perform the segmentation. The algo-
rithm utilizes HTML tag distance to determine page
unit boundaries by analyzing a page’s DOM tree, a
structural representation used internally by most popu-
lar web browsers. Specifically, we utilize the TreeWalker
DOM object to extract the page’s HTML tag hierarchy.
In addition to extracting the content for each page unit,
we record the pair of DOM indices that correspond to
the start and the end positions of the unit within the
DOM tree. The indices are used to convey recommen-

dations to the user (via scrolling and highlighting) as
shown in in Figure 4(b).

Context-Sensitive Page Unit Recommendation
One of the key components behind the InsightFinder is
the relevance computation algorithm. As a user browses
the web in search of new information related to their
task, the InsightFinder employs a relevance algorithm
that compares the information stored in the tool’s con-
text model with the content of each of the page units
extracted from the browser’s current page. The page
units are ranked based on the computed degree of rele-
vance and then recommended visually to the user.

Relevance computation is an important part of the In-
sightFinder’s ability to support sensemaking tasks. It
assists users in “connecting the dots” by notifying the
user about potentially relevant connections between their
notes and the fragments of information currently on dis-
play within their web browser. This feature can prove
especially useful in quickly uncovering either intended
or serendipitous connections which a user would other-
wise overlook or obtain only by tediously analyzing the
entire page.

The remainder of this section provides a detailed de-
scription of the InsightFinder’s relevance computation
capabilities. First, it describes a scalar function that
calculates the context similarity between context model
nodes and page units. Next, building on the similarity
function, it defines the relevance function employed by
the InsightFinder to estimate how relevant an individ-
ual page unit is to a particular context model. Finally,
it describes how the relevance function is used to obtain
a overall ranking of relevant page units for an entire web
page.

Similarity Function
The relevance metric employed within the InsightFinder
is built upon a core function which evaluates the sim-
ilarity between a single node ni in the context model
and a single page unit pj taken from a web page. This
similarity function, noted as σ(ni, pj), returns a scalar
value equal to or greater than zero. A large σ value
signals a high degree of similarity, while a value of zero
indicates the absence of any relationship. The σ func-
tion is defined in Equation 1 where getContent extracts
key terms from a page unit as performed by the content
extraction module, and S is a measure which compares
two content units as described later in this section.

σ(ni, pj) = S(Content{ni}, getContent{pj}) (1)

The content extraction module produces a set of ex-
tracted content terms from a data unit (either a page
unit or a node in a user’s context model). The S(c1, c2)
metric compares the content of two data units, c1 and
c2, by examining all possible pairwise combinations of
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terms t1 ∈ c1 and t2 ∈ c2 as defined below, where Ŝ is
a pairwise co-occurrence metric.

S(c1, c2) =
∑

∀ti∈c1,∀tj∈c2

Ŝ(ti, tj) (2)

The current prototype supports two alternative Ŝ mea-
sures: the Jaccard coefficient [25] and the pointwise mu-
tual information measure [4]. These metrics are two of
the most popular co-occurrence measures used to eval-
uate the text similarity between terms in the natural
language processing and information retrieval commu-
nities [16, 20, 24, 32]. We define both measures below
and present experimental results comparing the perfor-
mance of each technique in the evaluation section of this
paper.

Jaccard coefficient. The Jaccard coefficient, noted as
JC(t1, t2), measures the co-occurrence of two terms, t1
and t2, as defined below:

JC(t1, t2) =
Θ(t1 ∧ t2)

Θ(t1) + Θ(t2)−Θ(t1 ∧ t2)
(3)

where ∧ denotes the AND operator between terms, and
Θ is a function that returns an estimate of the frequency
of occurrence of either a single or pair of terms. In our
algorithm, we use the frequency of occurrence as mea-
sured by the number of web pages which contain a par-
ticular term (or pair of terms) according to the Yahoo!
search engine. The JC measure is a real function and
ranges from zero (no similarity) to one (identity). The
value of one indicates that t1 and t2 always appear on
the same page and never appear in isolation.

Pointwise mutual information. The pointwise mu-
tual information measure, noted as PMI(t1, t2), is de-
fined in Equation 4.

PMI(t1, t2) = log
Θ(t1 ∧ t2)/M

[Θ(t1)/M ][Θ(t2)/M ]
(4)

where M is the total number of pages in the corpus from
which the Θ function determines term frequency. We
again use the Yahoo! search engine to estimate the Θ
and manually estimate M to be sufficiently large. The
PMI measure is a real function and its value domain
is [0,∞].

Relevance Function
The InsightFinder’s relevance function, γ(C, pj), mea-
sures the similarity between an individual page unit pj

and the user’s overall context model C. The γ func-
tion is built on top of the similarity measure σ(ni, pj)
as defined in Equation 5.

γ(C, pj) =
∑

∀ni∈NC

ω(ni)σ(ni, pj) (5)

where NC is the set of nodes in C and ω(ni) is a weight
factor for the contribution of node ni. The γ value is a
scalar equal to or greater than zero. Larger values for γ
indicate a higher degree of relevance for the page unit
pj .

Conceptually, γ(C, pj) estimates the relevance between
C and pj by summing the similarity between pj and
every node ni of the context model C weighted by the
function ω. In the current implementation we use equal
weights where ω = 1 for all nodes. In future work,
we plan to examine more complex weighting functions
(e.g., based on the centrality of individual nodes) to
incorporate the structure of the context model into the
relevance calculation.

Relevance Ranking
The InsightFinder uses the relevance metric to recom-
mend task-relevant web page units to the user. Each
time a user visits a new page or alters their notes, the
relevance function is iteratively called to calculate the
relevance of every page unit pj from the current web
page to the current context model C. This produces
a list of page units mapped to their affiliated relevance
scores. Page units with a score of zero are removed from
the list because they correspond to regions of the cur-
rent web page which have been determined to have no
relevance to the user’s task. The remaining page units
are sorted based on their relevance score and presented
to the user within the InsightFinder interface.

EVALUATION
We conducted a pair of user studies to validate the In-
sightFinder’s approach to page unit recommendation.
The first study quantified the accuracy of our algo-
rithm’s recommendations while the second found that
users of the InsightFinder exhibited statistically signifi-
cant reductions in task completion time. In this section,
we describe our prototype implementation and discuss
results from both studies.

Prototype Implementation
The InsightFinder prototype is designed as a sidebar-
based extension to the Mozilla Firefox web browser.
The user interface, shown in Figure 2, is implemented
using XUL. The major computational components (e.g.,
content extraction, page segmentation, relevance com-
putation, etc.) are implemented in Java. JavaScript
is used to connect the XUL interface with the Java-
based system modules. In addition, the system utilizes
a remote web service to gather term frequency data as
required by the similarity function.

Ranking Accuracy Evaluation
The page unit recommendation algorithm employed by
the InsightFinder examines each visited web page and
provides users with a context-based ranking of relevant
page units. To evaluate the quality of our system’s rank-
ing algorithm, we compared system-generated rankings
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Page 1 Page 2 Page 3 Page 4

User 1 0.3148 0.4236 0.3060 0.4443
User 2 0.5197 0.6517 0.2780 0.4193
User 3 0.2881 0.6024 0.2389 0.2808
User 4 0.3127 0.6433 0.3733 0.3928
User 5 0.3071 0.8143 0.2503 0.5543
User 6 0.3900 0.5726 0.3363 0.1867
User 7 0.5024 0.4305 0.2636 0.3956
User 8 0.6119 1.0000 0.2602 0.4069
User 9 0.3319 0.5143 0.1970 0.3069
User 10 0.4556 0.6107 0.6344 0.5407
Avg. 0.4034 0.6263 0.3138 0.3928
Std. 0.1123 0.1737 0.1233 0.1125

(a) MHR for Jaccard Coefficient

Page 1 Page 2 Page 3 Page 4

User 1 0.2741 0.5079 0.3016 0.3038
User 2 0.2733 0.6000 0.3521 0.3556
User 3 0.3269 0.7200 0.3968 0.2149
User 4 0.2928 0.7500 0.4605 0.3169
User 5 0.4044 0.7267 0.2784 0.5460
User 6 0.3022 0.7933 0.2373 0.2416
User 7 0.3467 0.4086 0.4350 0.4036
User 8 0.3756 0.7583 0.3025 0.3645
User 9 0.1789 0.6050 0.3808 0.2538
User 10 0.6444 0.7676 0.8000 0.6143
Avg. 0.3419 0.6637 0.3945 0.3615
Std. 0.1232 0.1282 0.1591 0.1302
(b) MHR for Pointwise Mutual Information

Table 2. Relevance ranking performance (MHR) using
(a) Jaccard coefficient and (b) pointwise mutual infor-
mation similarity measures.

with human judgments of relevance using the same set
of page units. We compared the human rankings to
both similarity measures supported by our system: the
Jaccard coefficient and pointwise mutual information.
The methodology and results are described below.

We asked ten human subjects to participate in our ex-
periment. Each participant was told to work on the
same sensemaking task: vacation planning for a trip to
Boston, MA in the USA. All participants were residents
of Taiwan and none had ever visited Boston. Partici-
pants were instructed to collect any travel information
they considered useful for their trip, such as accommo-
dations, attractions, climate, etc. To avoid bias, partic-
ipants were not provided with any information about
our research goals or the InsightFinder system.

Prior to the study, we manually captured a base set
of user notes for the Boston task. These notes were
given to participants as an initial planning draft for
their task. In addition, we chose four specific travel
pages that were each generally related to the city of
Boston. Each page was located on the web site of a
different content provider.

During their study session, participants were told to
visit each of the four test pages one at a time. To avoid
bias, participants were not allowed to access the Insight-
Finder’s ranking results. Each user was asked to provide
a subjective ranking of the most relevant page units on
each page using their own judgment. Participants were

not required to rank every page unit. However, we did
ask them to provide a list of at least the top five most
relevant page units.

We then compared these user generated rankings with
the rankings produced by the InsightFinder system when
applied to the same four test pages. We scored the com-
parison between the human and system rankings via a
metric we call the mean hit ratio, or MHR. This met-
ric is similar to mean average precision (MAP) com-
monly used in the evaluation of ranked retrieval sys-
tems, but tailored to the page unit recommendation
problem posed on our study. We define MHR as a
scalar measure of how well two rankings match, ranging
from zero to one. A higher MHR value indicates a bet-
ter match between any two given rankings, where the
value of one corresponds to a pair of rankings that are
identical in every position. MHR is defined formally in
Equation 6.

MHR =
1
R

R∑
r=1

H(r). (6)

where r is the participant’s rank of a page unit, R is the
number of ranked page units, and H(r) is the hit ratio
in the InsightFinder’s ranking at a given cut-off rank r,
capturing the fraction of the top r rankings in common
between the rankings. We set R = 5 to consider only
the top five rankings from each human subject.

Table 2 provides the MHR values for each of the 10
users on each of the four pages in our study. The ta-
ble includes results for both the Jaccard coefficient and
pointwise mutual information implementations of the Ŝ
function. Averaged MHR values are provided at the
bottom of the table.

Discussion. MHR captures both precision and recall
aspects of our ranking algorithms. The MHR values
for both Ŝ metrics average roughly 0.4. This value
means that, on average, users are able to find highly
relevant page units within the top two or three system
generated rankings. Moreover, the standard deviations
of MHR values are quite small, implying that the In-
sightFinder’s relevance ranking algorithm is stable and
relatively consistent across pages.

Comparing the Jaccard coefficient with pointwise mu-
tual information, our results show roughly equal MHR
values. This finding implies that both metrics perform
similarly well in terms of ranking quality. However, in
terms of computational complexity, the Jaccard coeffi-
cient requires fewer multiplications and executes more
quickly. We therefore use it as our preferred metric
within the InsightFinder system.

Task Performance Improvement
The overall goal of the InsightFinder’s context-based
page unit recommendation algorithm is to assist a user
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Figure 5. Users of the InsightFinder located relevant
information faster (p < 0.01) in all four tasks.

in connection discovery while performing a sensemak-
ing task on the web. While the InsightFinder can assist
in several ways, we conducted an empirical user study
to quantitatively measure one specific benefit of the In-
sightFinder: the reduction in time required by users to
locate relevant information within a web page.

We asked another set of ten participants to complete
the same sensemaking task as used in our first study:
vacation planning for a trip to Boston. Participants
were divided randomly into two groups of five users.
As in the first experiment, all participants were given
the same initial set of notes to use as a common starting
point for the task. The participants in one group were
asked to use a normal web browser, while the second
group was given access to the InsightFinder’s page unit
ranking functionality.

Each participant was asked to examine each of the four
test pages used in the previous study. For each test
page, participants were asked to locate five page frag-
ments that they considered most relevant to their task.
For each test page, we recorded the time spent deter-
mining the most relevant content. The detailed results
of our study are shown in Table 3 and summarized in
Figure 5.

Discussion. Our results indicate a strong reduction
in time required to complete the study task for partic-
ipants using the InsightFinder tool. On average, these
users completed the task more than 30 seconds faster
than their counterparts in the default browser group.
This provides statistically significant evidence (p < 0.01)
that the InsightFinder has measurable reductions in the
user time required to identify relevant content within a
web page.

In addition, standard deviations of the time measure-
ments are smaller and more consistent within the In-
sightFinder participant group. We believe this is due to
two reasons. First, the InsightFinder’s relevance rank-
ing lets users prioritize their efforts by skipping over
less useful information more easily. Users can click on

Page 1 Page 2 Page 3 Page 4

User 11 145 130 176 165
User 12 196 173 128 223
User 13 166 163 149 163
User 14 220 216 153 134
User 15 153 142 136 157
Avg. 176 165 148 168
Std. 31 33 18 33

(a) Users with the InsightFinder

Page 1 Page 2 Page 3 Page 4

User 16 171 223 190 440
User 17 187 173 154 167
User 18 221 168 151 242
User 19 193 203 166 305
User 20 306 187 222 229
Avg. 216 191 177 277
Std. 54 23 30 104

(b) Users without the InsightFinder

Table 3. Statistics of user time spent (in seconds) locat-
ing five relevant fragments on a given page both (a) with
and (b) without the InsightFinder.

highly ranked page units to jump from one potentially
region of the page to another.

Second, the segmentation process itself (as represented
by the span of recommended page units) helps users
understand the structure of a web page. Even when
a user finds the content of a recommended page unit
irrelevant, they receive an important benefit. Instead of
carefully reading the entire page unit, users can quickly
skip over the entire fragment and move on to other more
promising regions of the page.

Overall, these evaluation results provide preliminary ev-
idence that the InsightFinder can be a useful tool for
sensemaking tasks on the web. While additional tech-
nologies and evaluation studies are required, the In-
sightFinder provides measurable improvements in user
performance when compared to traditional web browser
interfaces.

CONCLUSION AND FUTURE WORK
This paper introduced the InsightFinder, an extension
to the basic web browser which provides traditional
note-taking capabilities augmented with a novel tech-
nique for context-based page unit recommendation. Our
algorithm dynamically analyzes each visited web page
with respect to a task-specific context model to deter-
mine the most relevant page units. We exploit natural
note-taking activity, common to sensemaking behavior,
as the basis for our task-specific context model.

Results from an empirical user study demonstrate that
our tool can effectively identify content-relevant page
segments when compared to human judgments of rel-
evance. Moreover, the study findings show that par-
ticipants using the InsightFinder can identify relevant
content within a web page significantly faster than those
using a traditional browser.
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While our initial approach shows promise, there are a
number of topics that could benefit from additional re-
search. In particular, we believe that extending the
content extraction module to support n-gram term ex-
traction would provide significant benefit in recommen-
dation accuracy. We also believe that recommendations
could be improved by incorporating the structure of a
user’s notes into the algorithm. We plan to experiment
with more sophisticated node weighting functions (ω in
our notation) to reach this goal. Finally, we plan to ex-
plore richer note-taking interfaces to improve the overall
usability of the tool.
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