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Fig. 1. DICON is a dynamic icon-based visualization technique that helps users understand, evaluate, and adjust complex multidi-
mensional clusters. It provides visual cues describing the quality of a cluster as well as its multiple attributes, and can be embedded
within many kinds of visualizations such as maps, scatter plots, and graphs.

Abstract— Clustering as a fundamental data analysis technique has been widely used in many analytic applications. However, it
is often difficult for users to understand and evaluate multidimensional clustering results, especially the quality of clusters and their
semantics. For large and complex data, high-level statistical information about the clusters is often needed for users to evaluate
cluster quality while a detailed display of multidimensional attributes of the data is necessary to understand the meaning of clusters.
In this paper, we introduce DICON, an icon-based cluster visualization that embeds statistical information into a multi-attribute display
to facilitate cluster interpretation, evaluation, and comparison. We design a treemap-like icon to represent a multidimensional cluster,
and the quality of the cluster can be conveniently evaluated with the embedded statistical information. We further develop a novel
layout algorithm which can generate similar icons for similar clusters, making comparisons of clusters easier. User interaction and
clutter reduction are integrated into the system to help users more effectively analyze and refine clustering results for large datasets.
We demonstrate the power of DICON through a user study and a case study in the healthcare domain. Our evaluation shows the
benefits of the technique, especially in support of complex multidimensional cluster analysis.

Index Terms—Visual Analysis, Clustering, Information Visualization

1 INTRODUCTION

Clustering is a widely used method to group data entities into sub-
sets called clusters such that the entities in each cluster are similar in
some way. A powerful feature of clustering algorithms is that they can
generate clusters without any pre-defined labels or categories, which
makes them an ideal choice for analyzing data with little or no a priori
information. Unlike classification in which categories with clear se-
mantics are pre-defined, clustering by definition works without these
initial constraints on how data entities should be grouped. Users are
only required to choose a distance function (e.g., Euclidean distance)
that measures how similar two data items are in a feature space, and
some other parameters such as the number of clusters or a maximum
cluster diameter. Clustering algorithms will then automatically parti-
tion data. While this technique is powerful, users often have difficulty
understanding the semantic of the resulting clusters and evaluating the
quality of the results, especially for multidimensional data.

There are several issues which make understanding and evaluating
clustering results difficult. First, for multidimensional data, the enti-
ties that are grouped together are close in a multidimensional feature
space. However, their similarity may be mainly because of their close-
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ness on a subset of dimensions instead of all dimensions. Understand-
ing these abstract relationships can be challenging. Moreover, a cluster
may contain several different subclusters which have different mean-
ings for users. This subcluster structure is usually hard to detect. Sec-
ond, as unsupervised learning processes using no semantic knowledge
or pre-defined categories, clustering algorithms often require users to
input some parameters in advance. For example, users must provide
the number of clusters (i.e., k) for the well known K-means algorithm.
However, it challenging to select a proper k value for the underlying
data. Therefore, algorithms like K-means might group together en-
tities that are semantically different (when k is smaller than the real
number of clusters) or separate entities that are semantically similar
(when k is larger than the real number of clusters). Thus, users need
some way to evaluate and refine the clustering results.

Information visualization can be of great value in addressing these
issues. For example, techniques such as scatter plot matrices [10],
parallel coordinates [18], and RadViz [25] have been used to visually
explain the results of clustering algorithms. Some algorithms focus on
revealing the multi-attribute values of clusters to help users understand
the semantic of clusters while others provide visual cues for the cluster
quality. However, none of them offer a complete solution for cluster
interpretation, evaluation, and refinement. We need a visualization
which allows users to understand the meaning of various clusters, e-
valuate their qualities, compare different clusters, and refine clustering
results as necessary. In addition, given the wide range of applications
of clustering, we want a visualization that can be conveniently embed-
ded into various visual displays or presentations.

In this paper, we propose DICON, a dynamic icon-based visualiza-
tion technique that helps users understand, evaluate, and adjust com-
plex multidimensional clustering results. DICON encodes the raw da-



ta values in multiple dimensions as well as the statistical information
related to cluster quality. It adopts an icon design which can be con-
veniently embedded into a wide range of presentations. Moreover, it
supports intuitive user interactions for cluster refinement. The major
contributions of this paper are as follows:

• A multidimensional cluster icon design that encodes multiple da-
ta attributes as well as derived statistical information for cluster
interpretation and quality evaluation.

• A stabilized icon layout algorithm that generates similar icons
for similar clusters for cluster comparison.

• Intuitive user interactions to support cluster refinement via direct
manipulation of icons.

2 RELATED WORK

This section provides an overview of related work. We focus on tech-
niques most relevant to DICON, including treemap visualization, visu-
alization of multidimensional clusters, icon-based multivariate visual-
ization, and interactive cluster exploration and analysis. More general
surveys can be found in [21, 23].

2.1 Treemaps
The Treemap [19,31] is one of the most well known techniques for vi-
sualizing hierarchical information. Many algorithms [2,3,32,37] have
been proposed to lay out treemaps according to different optimiza-
tion criteria. The design of DICON is inspired by these techniques.
However, when compared with traditional treemaps, DICON has the
following significant differences. First, DICON introduces a novel en-
coding method which targets on the visualization of multidimensional
clusters and associated statistical measures rather than hierarchial in-
formation. Second, a stabilized layout algorithm is proposed to gen-
erate similar cluster icons according to cluster similarities. Finally,
several new interactions are designed to facilitate interactive cluster
refinement and manipulation.

2.2 Visualizing Multidimensional Clusters
Parallel coordinate plots (PCPs), introduced by Inselberg [18], are
widely used for multidimensional data. Many researchers have fo-
cused on finding innate cluster patterns over multiple dimensions. For
example, Fua et al. [12] used hierarchical clustering and proposed a
variation on PCPs to convey aggregate information for the resulting
clusters. Novotny [26] represented each cluster as a polygonal area
and used both opacity values and textures to distinguish different clus-
ters. Zhou et al. [40] introduced visual clustering to reduce edge clutter
in PCPs. Many other clutter reduction and pattern enhancement meth-
ods have been proposed including dimension reordering [1, 34] and
smooth, bundled curves [39].

However, as studied by Holten et al. [17], PCPs have a limited ca-
pability when visualizing multiple clusters. If the number of clusters is
over five, a rather small number, user performance in cluster identifica-
tion tasks decreases dramatically. As shown in our user study, DICON
overcomes this limitation and enables effective cluster identification
for much larger numbers of clusters.

The scatter plot is another well known visualization technique. It
is simple in design, very familiar to users due to its long history, and
has a high degree of visual clarity [35]. Typical scatter plots depict
data distributions across two dimensions. For multidimensional data,
scatter plot matrices can be used. Scatter plot matrices [4] represent all
pairwise combinations of dimensions to provide an overview of an en-
tire dataset. However, finding multidimensional clusters using a scatter
plot matrix is tedious and time consuming. Some dimension reduction
methods such as Principal Component Analysis, Multidimensional S-
caling and RadVis [25] can project multidimensional data onto a 2D
plane where data clusters can be more easily identified using distance
measures. Unfortunately, it is difficult for users to understand the se-
mantics of the resulting clusters. DICON is designed to leverage the
advantages of both traditional scatter plots and dimension reduction al-
gorithms to provide more effective cluster interpretation capabilities.
Another problem of scatter plot technique is the unavoidable overlap-
s. HeatMaps [6, 9, 11] has been designed to tackle this problem. It

uses 2D tables with color-coded cells to identify meaningful correla-
tions. Despite their utility in many scenarios, these techniques cannot
effectively convey all attributes of multidimensional data. In contrast,
DICON is designed specifically to handle multidimensional clusters.

2.3 Icon-based Multivariate Visualizations
Icon or glyph-based designs have been studied for many years. For
example, Chernoff faces [5, 35] were proposed in the 1970s and use
human facial features to encode multiple data dimensions with a s-
ingle icon. Similarly, stick figure techniques [28] employ relatively
simple icon designs where data values are mapped to visual features
such as angle, length and thickness. Post et al. [29] proposed 3D icon-
ic techniques for feature visualization. Keogh et al. [24] proposed to
use colored bitmap to encode time series data.

Other designs like [22, 38], depict individual feature values using
colored rectangular cells or pixels. The cells/pixels can then be packed
together into an icon using various layout arrangements. These ap-
proach are perhaps most similar to the DICON design. However, these
existing designs often obscure the semantic of a cluster. DICON in-
troduces a design that conveys more cluster information, helping users
better understand, compare, and adjust multidimensional clusters.

2.4 Interactive Cluster Exploration and Analysis
Many visualization tools leverage the power of rich interactivity to
facilitate cluster exploration and analysis. For example, Henry et
al. proposed NodeTrix [15] which combines a matrix representation
for graphs with traditional node-link graph visualization techniques.
Users can select and group nodes to generate an adjacency matrix view
to highlight relational patterns. Seo et al. designed HCE [30] for hier-
archical multidimensional cluster analysis. Elmqvist et al. developed
an interactive scatter plot matrix [10] which leverages animated tran-
sitions to smoothly switch between different user selected dimensions.
In these systems, interactivity provides an important role in allowing
users to perform exploratory visual analysis. DICON follows a simi-
lar approach and includes its own powerful interactive capabilities that
allow users to compare and refine clusters as they explore their data.

3 VISUALIZATION DESIGN

In this section we first present several design guidelines that influenced
our development of the DICON technique. We then provide a detailed
description of DICON’s visual encoding methodology. Finally, we
introduce a number of interaction features for cluster manipulation.

3.1 Design Guidelines
Motivated by the challenges of cluster interpretation, evaluation, and
comparison, we identified a few key design guidelines to follow during
the development of DICON.

A cluster’s visual representation should present different levels
of granularity. Clusters contain information at several scales, rang-
ing from specific entity data features, to individual entities, to overall
clusters. An effective visual representation must convey each of these
levels of detail. DICON adheres to this guideline by converting clus-
tered data into an entity-feature-cluster hierarchy and using a treemap-
based technique to represent them. Connections between features for
a single entity are preserved via interactive highlights.

A multidimensional cluster’s representation should employ
consistent encodings across entity dimensions and scales. A cluster
icon should uniformly apply visual encoding techniques across data
dimensions and scales so that users can smoothly navigate across data
dimensions and to reduce visual complexity. DICON uses the same
encoding technique, based on the size and color of areas, to represent
all feature dimensions. This approach is repeated at the cluster level,
providing a consistent representation across scales.

Icons for similar clusters should appear visually similar while
dissimilar clusters should have icons that are easily distinguish-
able. Icons should provide at-a-glance representations that allow user-
s to easily determine which clusters are different and which are sim-
ilar. This design requirement is critical for both cluster identification
and comparison tasks. DICON satisfies this design guideline by using



Fig. 2. Visual encoding for a patient dataset. In this encoding, an individual entity is described by a feature vector. Each feature in the vector is a
numerical value depicted by a small cell. The cells are packed together to generate an individual icon. Individual icons are grouped together by
splitting and re-grouping their features into categories.

a novel stable layout algorithm. This algorithm maintains consistent
feature locations both within and across icons.

The visual representation should allow users to interactively
manipulate clusters for refinement and exploration. Users should
be able to select clusters to be merged, select entities to be removed
from a cluster, and select individual clusters for subdivision into finer
grained sets. All changes in cluster membership should be visually
reflected in a stable manner to maintain a user’s mental map as much
as possible. DICON satisfies this guideline by providing a number of
interactive cluster refinement features.

3.2 Visual Encoding
Following the design guidelines listed above, we designed DICON, a
dynamic icon-based visualization technique which represents cluster-
s of multidimensional data as compact glyphs. As multidimensional
clusters naturally contain information at multiple scales, we adopt a
treemap-like visual encoding scheme. Our icon design, summarized
in Fig. 2, uses a combination of spatial size, position, shape and color
to convey key cluster properties.

Size Encoding. Generally speaking, an n-dimensional data clus-
ter contains a number of entities, each of which is described by a set
of features, noted as F = f0 . . . fn. For example, Fig. 2(a) depicts an
entity from a healthcare dataset which corresponds to a single patient’s
medical record. That record contains six features, including severity
scores for various co-morbidities such as cancer and diabetes. DICON
requires quantitative features and the visual encoding process begins
by globally normalizing the range of all features to the interval [0,1].
This enables the comparison of multiple features regardless of scale.
An optional local normalization step is performed on each entity such
that the total value of all features equals one (i.e., ∑

n
i=0 fi = 1). The

feature values are then mapped to color-coded cells whose sizes repre-
sent these values. As depicted in Fig. 2(b), the cells are packed togeth-
er to form an iconic representation of the entity. A group of entities
are further packed as clusters as shown in Fig. 2(d). If performed, the
local normalization step produces an icon in Fig. 2(b) with a total area
of one unit. This makes cluster icon sizes correspond to the number
of items in a cluster, but makes feature value comparison across en-
tity sizes difficult. Thus, color opacity can be used to display actual
non-normalized values, or when cluster icon size is less important the
optional local normalization can be skipped.

Position and Shape Encoding. When a set of entities are grouped
together into a cluster, as illustrated in Fig. 2(c), the entity icons must
be combined into a single aggregate iconic representation. We gener-
ate a cluster icon by (1) splitting each entity icon into individual feature
cells, (2) regrouping the feature cells by feature type, and (3) packing
the regrouped cells into a single overall cluster icon. One example is
shown in Fig. 2(d) which uses the traditional treemap layout to create a
cluster icon. A more advanced implementation is also proposed. With
the help of a stabilized Voronoi layout described in Section 4.1.2, it

Fig. 3. Encoding the normalized kurtosis k using icon shape. The shape
of the icon intuitively shows the distributions of underlying data.

Fig. 4. Encoding the normalized skew using icon shapes. The first two
figures are the icons with different skew values. The third one is an icon
generated by combining both kurtosis and skew together.

embeds cluster kurtosis and skewness using an icon’s shape to simu-
late the entity distributions within the cluster as illustrated in Fig. 3
and Fig. 4. The width of the icon’s top edge encodes kurtosis (the
“Peakness Cue”) while the horizontal position of the peak of the icon
encodes skew (the “Asymmetry Cue”).

It should be noted that shape as a preceptive visual property pro-
vides high efficiency for cluster comparison in multiple scales. For
example, Fig. 1(a) clearly shows that all of the depicted state clusters
have similar distributions except for Florida, which has greater peak-
ness and opposite asymmetry. Unfortunately, the irregular icon shapes
can make precise size comparisons more difficult. DICON thus allows
users to turn this feature on or off as needed during their analysis.

Color Coding. By default, each cell in a cluster icon is rendered
using the color assigned by its corresponding feature. For instance, all
“cancer” cells in Fig. 2 would be rendered in the same shade of blue.
In addition, three other color schemes are provided to convey various



Fig. 5. Color encoding and visual cues in two example clusters: (a)
Cluster quality cue; (b) Co-occurrence cue; (c) Domination cue.

visual cues. They are critical for some tasks, but also introduce visual
complexity. Thus, we allow users to switch between color schemes.

The first scheme uses cell color saturation to convey globally nor-
malized feature values to facilitate quantitative comparison over clus-
ters in case the cell size encodes the locally normalized values.

Our second scheme is designed to depict cluster quality. Feature
variance is selected as the quality measure and encoded by shading as
illustrated in Fig. 5(a). Multi-level cushion shading is also used to ease
interpretation even for small icons. For a given cell, feature variance is
positive if the feature value is larger than the cluster mean and negative
if smaller than the mean. Positive and negative variances are depict-
ed using rising and sinking shades, respectively. Under this scheme,
high quality clusters appear more homogeneous which provides a clear
“Cluster Quality Cue”. An “Outlier Cue” is also represented under
this scheme. Outliers have large variances from the cluster mean and
are visually highlighted with intense and sharp shading.

The final color scheme depicts feature co-occurrences to facilitate
multidimensional analysis. We define feature co-occurrence as two
features fi and f j that both have a value greater then zero within the
same entity. We define a co-occurrence score Ci = ∑ j p( f j > 0| fi >
0)2 which measures how often a feature fi co-occurs with all other
features (p(·) is the conditional probability). The result of this metric
is normalized and encoded using color saturation to highlight the most
co-occurred features within the cluster. The resulting color scheme
serves as the “Co-occurrence Cue”. As illustrated in Fig. 5(b), many
patients are highlighted by dense colors in the bottom cluster because
they have both the diabetes (colored in orange) and the kidney disor-
ders (colored in blue). In contrast, most of the patient cells in the top
cluster are encoded use light colors as most of them merely have the
single disease, kidney disorder. Thus, reversing the color, we have the
“Dominate Cue” that highlights the features that have not co-occurred
with any other features as shown in Fig. 5(c).

Discussions. This design provides a number of key advantages.
First, it provides intuitiveness and efficiency by leveraging several well
established techniques such as a space filling layout [31] and the use of
color saturation to depict data variance and diversity [27]. Second, DI-
CON uses color and positions for cluster identification which are both
high efficiency cues as described in [35]. As a result the icons clear-
ly depict which clusters are similar to each other while still providing
visual cues for more detailed analysis. Third, encoding components
such as color and shape can be well scaled without significant loss of
information as described, respectively, in [20] and [36]. This allows
the design to remain effective for both large and small sized icons. In
addition, the approach scales to work effectively with large numbers of
icons as shown in Fig. 12. Fourth, the icons enable interactive manip-
ulation which will be described in the next section. Finally, our design
compresses multidimensional cluster information into relatively small
cluster icons which can be easily embedded within other visualizations
as illustrated in Fig. 1.

Yet there are also some constraints on our approach. In particular,
the number of feature dimensions that can be visualized at any one
time is limited because each must be represented by a unique user-

distinguishable color. To alleviate this problem, feature selection can
be used to identify the key features that should be included in a giv-
en visualization. Another challenge is that it can be hard for users to
obtain precise feature values from our representation because compar-
isons of size and color across clusters can be difficult. In addition,
the splitting of entities into parts may impede analysis for application-
s focusing on entities. However, we believe these limitations are a
reasonable trade-off for the benefits of representing multidimension-
al cluster information using small, compact icons. We have also in-
troduced some interactive features, such as highlights and tooltips, to
target some of these concerns.

3.3 Interactions
As expressed in our design guidelines, a key requirement for DICON
is that the visualization must allow users to interactively explore and
refine the multidimensional clusters. DICON allows users to interac-
tively perform the following cluster manipulation actions.

Merge. Users can merge cluster icons in two ways. First, users
can drag and drop one icon onto another. Performing this action will
merge the two corresponding clusters and create a single new icon
to represent the newly created cluster. Second, users can merge two
or more clusters by drawing a lasso around the corresponding icons.
DICON will then merge all clusters selected by the lasso. DICON will
animate the transition between states during the merging process to
clearly illustrate the changes being made.

Split. Given a cluster icon, users can perform several types of s-
plit operations. To remove specific outlier entities, users can simply
click on an entity and drag it out of the cluster. Releasing the mouse
finalizes the split. As a result, DICON creates a new icon to represent
the split entity and updates the existing cluster icon to reflect the split.
Users can also perform algorithmic split actions via a pop-up context
menu. After right clicking on a cluster, users can choose to perfor-
m either a binary split or an outlier split. The binary split operation
breaks a cluster into two different sub-clusters. K-means is chosen as
an example for the binary split in our implementation. Any other al-
gorithms can also be used. The outlier split operation removes the one
percent of entities that are farthest from the cluster center

Attribute Grouping. Users can explicitly request that data enti-
ties be re-grouped along various data dimensions. This feature allows
users to consider non-feature entity attributes. For example, in an elec-
tronic medical record use case where diseases are features, patients
could be grouped into clusters by non-feature attributes such as age,
sex, or location. DICON can handle attribute grouping for categorical,
numerical, and temporal attributes.

Filtering. DICON allows users to filter the set of feature categories
used for cluster icon generation. By default, all data attributes selected
as features are used to generate cluster icons. For multidimension-
al datasets with many such features, users can apply filters to reduce
visual complexity and to focus in on a subset of the feature space.

Highlights.Because our encoding method spatially distributes an
entity’s feature cells across the cluster icon, DICON supports entity
highlights. When a user’s mouse hovers over a specific feature cell, all
of the corresponding entity’s feature cells are highlighted. A tooltip
can also be shown to depict the entity’s key attributes.

4 SYSTEM OVERVIEW AND IMPLEMENTATION

The DICON system’s architecture, shown in Fig. 6, consists of three
primary components. First, the preprocessing module extracts key fea-
tures of the multidimensional dataset and optionally conducts an ini-
tial cluster analysis based on these features to transform raw data into a
set of entity records in the form of < id|cid| f1, f2, ..., fn|a1|a2|...|an >,
where id is the record id, cid is the cluster id (optional), fi is the ith
feature and ai is the ith non-feature attribute. The visualization module
first generates entity or cluster icons via an icon layout algorithm. It
then performs a global layout process to arrange the generated icons
within the overall visualization canvas. The user interaction module
supports user manipulations of the icons as described in Section 3.3.
These operations feed back into the preprocessing and visualization
modules to enable user-driven data exploration and cluster refinement.



Fig. 6. The overview of the DICON visual analysis system.

In a typical visual analysis process by using the above DICON sys-
tem, the users are given a set of data entities or some initial clustering
results which are visualized as icons. Their correlations are disclosed
by using different globle layouts and several visual cues such as the
visual similarity of the icons. The users can iteratively merge, group,
split the icons to generate or refine existing clusters until the high qual-
ity clusters are found. The whole process is rich in interactions which
are not highly depend on the automatic clustering algorithms.

The entire system was implemented in Java and has been used with
both traditional displays and on a Windows-based touch screen device.
In the remainder of this section, we provide additional details about
the icon and global layout algorithms. We also describe DICON’s
approach to handling animated transitions during cluster manipulation.

4.1 Icon Implementation
As mentioned previously, we adopt a treemap scheme to encode the
entity-feature-cluster hierarchy in our icons. Treemap layouts have
been heavily studied and many existing techniques can be leveraged.
However, traditional layouts cannot satisfy all of our requirements.
Therefore, we further develop a stabilized Voronoi-based layout.

4.1.1 Traditional Treemap Icons
The traditional treemap [31] is a well established technique used to vi-
sualize hierarchical structures. Many algorithms [3, 32, 37] have been
proposed to lay out traditional treemaps according to different opti-
mization criteria. These algorithms can be directly applied to generate
layouts for our icons. The results are quite promising as illustrated in
Fig. 5 and the process is very efficient. This makes them suitable for
real time icon manipulation.

However, despite its computational efficiency, the traditional
treemap icon also has some major limitations. First, the layout for
rectangular treemaps may not be stable during the cluster refinement
process. After users add or remove some entities to/from the cluster
icon, the positions of cells may be shuffled and the layout may change
dramatically. Second, there is no guarantee that similar icons will be
generated for similar clusters. Traditional layout algorithms only do
optimization within a single treemap. For multiple cluster icons, more
constraints are needed to guarantee that the same features in different
clusters are positioned in similar locations. Third, traditional treemap-
s produce rectangular icons which cannot be shaped to embed global
cluster statistics as described in Section 3.2. These limitations make
traditional treemaps inefficient for cluster comparison, and global s-
tatistic embedding.

4.1.2 Voronoi Icons
To overcome the limitations of traditional treemaps, we introduce a
new Voronoi icon layout that satisfies all of DICON’s design princi-
ples. Our algorithm embeds statistical information into the icon shapes
and also introduces a stability factor while leveraging the centroidal
Voronoi tessellation [7] and weighted Voronoi diagrams that are also
used by Balzer et al. [2]. Before describing our algorithm in detail, we
briefly review weighted and centroidal Voronoi tessellation.

Given a set P = p1, ..., pn of sites (initial points), a Voronoi Tessel-
lation is a subdivision of the space into n cells, one for each site in
P, with the property that a point q lies in the cell corresponding to a

site pi iff d(pi,q)< d(p j,q) for i distinct from j (d is a distance met-
ric function). The segments in a Voronoi Tessellation correspond to
all points in the plane equidistant to the two nearest sites. Weighted
Voronoi diagrams use a weight wi assigned to each point in pi as part
of the distance measure. The following additively weighted power dis-
tance measure can be used to create Voronoi tessellations with straight
line boundaries:

d(pi,q) = ||pi−q||2−w2
i (1)

Intuitively, one can consider the weighted Voronoi diagram as using
using circles as sites instead of points where the circles’ radii are a
function of the corresponding weight wi.

A Voronoi tessellation is called centroidal when all of the tessella-
tion’s sites are located at the center of mass for their respective regions.
It can be viewed as an optimal partition corresponding to an optimal
distribution of sites. A number of algorithms can be used to generate
centroidal Voronoi tessellations, including Lloyd’s algorithm and the
K-means algorithm (see [7]). Recently, Balzer et al. introduced an
optimization algorithm for weighted centroidal Voronoi tessellation to
generate Voronoi treemaps [2]. We further extend Balzer’s algorithm
by introducing a stabilized centroid.

Statistic Embedding. To strengthen the visual design, our lay-
out method first embeds statistical measures into an icon’s bounding
shape before applying the stabilized Voronoi layout. Generally speak-
ing, two standard moments, the skewness (γ = µ3/σ3) and the kurtosis
(κ = µ4/σ4−3), are embedded into cluster icons via an icon’s overall
shape that facilities analysis. In the layout, we use a ladder shape to
simulate the underlying data distribution as illustrated in Fig. 3 and
Fig. 4. The height and the top width of the ladder are defined, respec-
tively, by the following functions:

k′(k) = 2(α · k+1) · r, k′′(k) =−2r · k+2r (2)

where k is the kurtosis, r is the original radii of the icon and α ∈ [0,1]
is a factor that controls the sharpness of the ladder. The width of the
bottom end is automatically adjusted to keep the icon size proportional
to the number of its containing entities. The cluster skewness is further
used to adjust the position of the top vertex of the triangle to intuitively
represent the data’s asymmetry.

Stabilized Voronoi Icon Layout. Voronoi tessellation is comput-
ed within each shaped icon. We provide a stabilized Voronoi-based
icon layout algorithm which maintains the stability of Voronoi regions
when cluster changes occur and maintains a predefined order for sites
within an icon. It places Voronoi regions next to each other according
to their semantic similarities. In the layout process, we first arrange
the feature types in an order that is followed in all cluster icons. For
example, we can order the feature types according to their importance
or follow a predefined order with certain semantics.

We maintain this site order during layout by carefully controlling
the initial positions of their corresponding sites. Different strategies
are used for different icon shapes. For example, for circular icon-
s we initially layout the sites on a spiral line centered at and within
the boundary circle. For rectangular icons, the sites are laid out line
by line from left to right in order. A weighted CVT optimization is
then performed which assigns a weight to each site based on the cor-
responding value and adjusts their positions and weights to obtain a
proper tessellation.

The individual entity features are laid out inside the regions for each
feature type by carefully controlling the positions and movements of
their corresponding sites S = s1, ...,sn during the CVT iteration. In-
tuitively, in each iteration, we move a site si towards to its region
vi’s center of mass ci while trying to balance two other constraints.
First, we aim to position all similar sites as close as possible to each
other while positioning dissimilar sites far apart (the screen distance
|Xi−X j| is close to their semantic distance di j with a proper scaling
factor). Second, as entities are added or removed from a cluster, we
strive to maintain icon stability by minimizing any changes in location
from a site’s previous optimal position pre(si). Formally, we capture



Algorithm 1: VoronoiIconLayout()
Data: S(si, ...sn), V , ε , pre(s1), ..., pre(sn)
Result: coordinates of each site X(X1,X2, ...,Xn)
begin

if pre(S) is not empty then
X ′i = pre(si);

else
X ′i = random locations within V ;

stress′ = 10000 //give a very large value;
while ratio > ε do

//the coordinate update based on stress majorization;

Xi =
∑i< j ωi j(x j+di j(x′i−x′j)inv(||X ′i−X ′j ||))

∑i< j wi j
;

compute Voronoi tessellation vi according to Xi;
compute ci according to vi;
Xi = µ1 · (Xi− ci)+µ2 ·Xi +µ3 · (Xi− pre(si));
wi = wi · (1+(desiredi−ai)/desiredi);//adjust weight
if wi < 1 then

wi = 1
r = min{|Xi−X j|2/(wi +w j)};
if r < 1 then

wi = wi · r
str1 = ∑i |Xi− ci|2; str2 = ∑i |Xi− pre(Xi)|2;
str3 = ∑i< j(|Xi−X j|−di j)

2;
stress = ∑k(µk · strk);
ratio = (stress′− stress)/stress′;
µk = µk · (1+(stress− strk)/stress);
normalize µk;
X ′i = Xi;
stress′ = stress;

these constraints in a layout model which tries to minimize follow the
objective function:

µ1 ∑
i
|Xi− ci|2 +µ2 ∑

i< j
(ωi j|Xi−X j|−di j)

2 +µ3 ∑
i
|Xi− pre(Xi)|2

(3)
where Xi is the coordinate of si. ci(cx,cy) is the mass center of the
region vi which can be computed by following equations:

cx =
1

6A

N−1

∑
i=0

(xi + xi+1)(xiyi+1− xi+1yi)

cy =
1

6A

N−1

∑
i=0

(yi + yi+1)(xiyi+1− xi+1yi)

(4)

where A is the area of vi, and (xi,yi) is the ith vertex of polygon vi.
In the layout objective function (3), di j is the semantic distance

between two features fi and f j. It is defined by their corresponding
feature vectors fi ∈ Fi and f j ∈ Fj as (1− cos(Fi,Fj)) in our imple-
mentation. The weights µk (∑k µk = 1 and 0 < µk < 1) balance the
three parts of our layout model. They are changed adaptively during
each CVT iteration using several heuristic strategies. Intuitively, we
always keep µ1 larger than the other two weights since we want the
iteration to stop at a position where si at or close to its mass center
ci. Then we compute the errors of each part in the formula and in-
crease the weight of the part that has the largest error and decrease the
weight of the part that has smallest error. In this way, the part with
largest error is the focus for minimization during the next iteration.
Our proposed algorithm is specified in Algorithm 1. It leverages the
stress majorization [13] technique to provide a local minimization of
the model.

4.1.3 Discussions
The VoronoiIconLayout() algorithm satisfies all of the design princi-
ples outlined earlier in this paper. It has a time complexity of O(n2)

Fig. 7. Transition path bundling while splitting C0 into C1 and C2. The
transition paths of feature cells are bundled based on their hierarchical
cluster centers to reduce visual clutter during animation.

for each iteration which is the same as Balzer’s algorithm but worse
than Lloyd’s CVT algorithm (O(nlog(n))). Some acceleration tech-
niques such as Sud et al. [33] and Gotz et al. [14] are available but it
still remains a challenging task to layout Voronoi treemaps for large
datasets in real time. To have the benefits of both real time interaction
and high-quality layouts, DICON supports both rectangular treemap
icons as well as the optimized Voronoi icons. The first are used to sup-
port real time exploratory interactions. Because of its efficiency, users
can group any set of entities and clusters to generate new icons in real
time. Switching to the Voronoi view helps users better understand and
compare the clustering results.

4.2 Global Layout
After the icon layout process completes, a global layout algorithm
is used to position the icons and uncover their correlations. Various
layout algorithms can be used for different purposes as illustrated in
Fig. 1. For example, when icons are used to represent geographical
clusters, they can be globally laid out based on their locations as shown
in Fig. 1(a). DICON icons can also be used in conjunction with scatter
plots to uncover the correlations among various dimensions as shown
in Fig. 1(b). We can also apply our technique to a multi-relational
graph visualization shown in Fig. 1(c) to reveal both patient communi-
ties and their relationships. The communities are generated according
to patient similarities over multiple diagnoses and represented using
DICON icons. The link colors and thicknesses encode different types
of relations and their strengths, respectively. The layout of the icons
in the graph can be computed using a force-directed model.

Beyond these applications which embed the icons within another
visualization, DICON also provides a MDS-based projection to layout
cluster icons based on their similarity. A fast overlap removal algo-
rithm [8] is adopted to avoid overlapping icons. It eliminates over-
laps while retaining each icon’s original position as much as possible.
Some improvements were made to these algorithms to facilitate inter-
active cluster manipulations. First, we minimize icon movement when
clusters change by smoothing positional changes based on the icons’
previous positions. Second, an incremental layout technique is used
for split and merge commands. For example, when entities are split
off from a cluster, only modified clusters (including any newly created
clusters) are re-laid out in a sub-area followed by a global overlap re-
moval. Thus, the positions for far away cluster icons are not affected.

4.3 Animated Transitions
When a cluster manipulation interaction such as attribute grouping or
merging is applied, the icons may be reorganized and re-laid out to
generate a new presentation of the data. In our system, this changing
process is smoothly conveyed using a multi-step animated transition.
First, feature cells for entities that change clusters are split from their
original icon. Second, all of the feature cells are moved to their new
location and their shapes are changed accordingly. Finally, the feature
cells are repacked together under a new organization. During the sec-
ond step, a naive approach to moving feature cells can create complex
visual movements that are often confusing and hard to follow.

To overcome this problem, we use a transition path bundling tech-
nique. It aggregates the feature cells for each cluster into transition



Fig. 8. Visualizations of the cars dataset using (a) scatter plot matrices
with dimension reordering [10], (b) parallel coordinates with edge clus-
tering [40], (c) DICON using square-shaped Voronoi-based icons, and
(d) DICON using icon shapes to encode statistical cluster measures.

groups according to their movement trends. Each trend is defined us-
ing a polyline that describes the overall direction of movement. All the
transition paths in a group are bundled together using a B-spline based
on the control points of their associated trends. This spline guides the
animation path. We compute the trends by using the innate hierarchy
of our icon design. This algorithm is inspired by edge bundling [16].

To illustrate our algorithm, we consider a sample split interaction.
Suppose a cluster C0 is to be split into two smaller clusters C1 and C2
as shown in Fig. 7(a). Feature cell f1, along with other feature cells
fi, will be split from C0 and packed into a new icon for cluster C1.
Similarly, the remaining feature cells from C0 will move to cluster C2.
The trend for feature f1 is then defined as a polyline that connects the
centers of f1’s feature type region in the C0 icon, the C0 icon, the C1
icon, and its corresponding feature type region in C1. The transition
curves defined by the features’ polyline trends are used to smoothly
animate the feature cells as shown in Fig. 7(b).

5 APPLICATIONS

This section presents examples of how DICON can be used to analyze
multidimensional data. We discuss use cases for two different datasets.

5.1 Visualization of the Cars Dataset
We applied DICON to a cars dataset which has also been used to eval-
uate both parallel coordinates (PCP) and scatter plot matrices (SPM)
(see Fig. 8(a) and (b)). The cars dataset contains 407 cars described
by 7 different dimensions from which we selected 5 quantitative di-
mensions as features. The two remaining dimensions, year and ori-
gin, were used as additional attributes. The visualization results are
illustrated in Fig. 8(c). Compared with PCP and SPM, our technique
compresses the multidimensional information into a small number of
compact cluster icons which require very little space for display. DI-
CON immediately conveys the size of each cluster which is usual-
ly hidden in both PCP and SPM. For example, the number of cars
produced by Americans is about 3 or 4 times larger than the num-
ber of cars produced by European or Japanese manufacturers. From
Fig. 8(c), we can easily see that the European cars and Japanese cars

Fig. 9. Exploration of patient similarities with DICON: (a) Low quality in
the initial five clusters generated by grouping the patient icons based on
their visual similarity; (b) 21 user identified clusters in the co-occurrence
view after refining the clusters, which can be roughly separated into five
regions by their positions and visual similarities.

have similar features. However the statistical distributions are differ-
ent as shown in Fig. 8(d). American cars, when compared to Euro-
pean and Japanese models, usually have a larger weight (depicted in
yellow), larger displacement (depicted in purple), more cylinders (de-
picted in blue), somewhat reduced acceleration (depict in cyan), much
greater horsepower (depicted in red), and much fewer miles-per-gallon
(depict in orange). We believe that doing a similar multidimensional
comparison is relatively difficult with PCP and SPM techniques be-
cause line crossings and data overlaps are unavoidable in both of these
alternative visualizations.

5.2 Case Study in the Healthcare Domain
We also applied DICON within the healthcare domain to visualize a
dataset containing more than 10,000 patient records. The data includes
claims, labs, pharmacy, and patient profile information. To augmen-
t this data, we applied a patient similarity algorithm to compute pa-
tient similarity scores across multiple dimensions (e.g., diagnoses, lab
results, etc.). We also indexed the patient records to make the data
searchable. We then invited two physicians to participate in a case s-
tudy. Both physicians were required to complete two exploratory tasks
that were motivated by real use cases proposed by domain experts. The
tasks were as follows: (1) given a patient with a challenging disease,
find the records of similar patients to serve as reference points during
diagnosis; and (2) find the most prominent diseases over different age
groups, geographic locations, and sex for a given a set of patient data.

5.2.1 Patient Similarity Task
In this task, we selected the similarity scores with respect to diagnosis,
labs, profiles, NDC, and CPT as the features of each patient. Our user-
s started with a query using a target patient and the system returned a
large set of similar patients that were represented as icons and laid out
based on the MDS projection. The users were required (a) to identi-
fy several patient clusters, (b) to refine their quality according to the
data and cluster correlations, and (c) to answer how similar they are
to the target query. At the beginning, the users grouped the patients
according to their visual similarity and relative positions. This initial
grouping generated clusters with low quality as shown in Fig. 9(a).
The follow-up binary split and outlier split operations were used to
quickly refine the clusters at a rough granularity. Then a series of
more precise split and merge interactions moving small numbers of
patients were conducted to fine tune the clusters according to both i-
cons’ screen potions and visual similarities. After several iterations
of cluster adjustment, they finally found 21 meaningful and homoge-
neous clusters. When the users switched to the co-occurrence view
(see Fig. 9(b)), they found that the patient clusters are roughly separat-
ed into 5 parts as annotated by the dashlines. The clusters in region C1
shared similar diagnoses with the target patient; the clusters in region
C4 were similar to the target patient both in labs and diagnoses. This
approach also helped to detect several non-medically-relevant clusters
in C2. They were similarly to the target patient mainly by profiles.



Fig. 10. DICON showing clusters of patients grouped by age. Here
color depicts the co-occurrence cue to highlight the degree of disease
co-occurrence within each age group.

Fig. 11. The synthetic data used in user study task 1. Nine cluster icons
are arranged using MDS projection. Icon types are evaluated using (a)
random order packing, (b) ordered packing following the DICON design
guidelines, and (c) ordered packing combined with icon shapes.

5.2.2 Study on Disease Distributions

In this task, we selected the severity of various diseases as the fea-
tures to visualize with DICON. Our users found the requested dis-
ease distributions by using attribute grouping to cluster the patients
on non-feature data attributes. For example, they grouped patients
based on location and combined the icons with a map as illustrated
in Fig.1(a). This clearly depicted the disease distributions for different
states. When grouping patients by age, several disease co-occurrence
over different age groups were found in the dataset. As illustrated in
Fig. 10, “diabetes” was co-occurred with “kidney disorder” in patients
aged from 62 to 83. In the oldest patient group, these two diseases
were also co-related with “dementia”. Similar groupings were also
conducted by our users on other attributes such as race and sex.

6 USER STUDY AND INTERVIEWS

To evaluate DICON’s ability to facilitate cluster interpretation and
comparison for a large dataset, we conducted a controlled user s-
tudy. The study included 30 participants (24 males, 6 females) all
of whom were either graduate or undergraduate students. Participant
ages ranged from 19 to 30. We also interviewed domain experts.

6.1 Study Setup
In order to conduct controlled experiments, we generated two synthet-
ic datasets since the study contained too many parameters such as the
skewness, the kurtosis and the number of clusters. The datasets were
generated based on the multinomial distribution that made our synthet-
ic datasets close to real datasets. The first dataset contained 9 clusters
and 300 entities and was visualized using MDS layout as shown in
Fig. 11. The second dataset contained 50 clusters and 1000 entities
(see Fig. 12). With these datasets, we had users perform the following
tasks: (T1) identify the two most similar clusters in Fig. 11 and deter-
mine which features made them similar; (T2) identify groups of similar
clusters from the large set of icons in Fig. 12. We provided multiple
answers as choices for both T1 and T2 and also allowed users to write
down their own answers. Both of them evaluates the cluster compar-
ison which is the most important feature of DICON. The first task

Fig. 12. The synthetic dataset with 50 clusters used in user study task
2. Icons generated by (a) random order packing, (b) DICON’s ordered
packing, and (c) ordered packing combined with icon shapes.

evaluated DICON’s support for distinguishing between clusters. The
second task evaluated DICON’s effectiveness for comparisons over a
large set of clusters. We selected Voronoi icons for our study because
it satisfied all our design guidelines. For both tasks, we compared user
performance among three different Voronoi icon types: type 1 icons
had feature types packed in a random order; type 2 icons obeyed all
design guidelines including consistent ordering; type 3 icons were the
same as type 2 but added shapes to encode data distributions.

Before the study, users were given a 10 minute introduction to the
icon design. Users were then allowed to try DICON for themselves
to explore the patient dataset. Users were encouraged to group and
regroup clusters, and to view different statistic measures for the results.
This introduction was followed by a brief interview session to gather
initial feedback. Users then performed the formal study tasks. We
conducted a between subject study in which we separated the users
into three groups of 10. Group A used type 1 icons, group B used type
2 icons, and group C used type 3 icons. All users were required to
answer the questions as accurately as possible. Their response time
and task success rate were recorded. Finally a questionnaire survey on
system usability was conducted.

6.2 Study Results and Analysis
The study results are summarized in Fig. 13. The benefits of the pro-
posed design principles were evident in both the task response time
and the task success rate. A two-way repeated measures ANOVA anal-
ysis showed that when compared with the random type 1 icon, both
type 2 and type 3 icons had significant improvements in response time



Fig. 13. User study results including (a) task response time, (b) task success rate, and (c) subjective feedback on “ease of use” and “usefulness”.

for both T1 (type 2: 0.0002 < .05; type 3: 0.0001 < .05) and T2 (type
2: 0.017 < .05; type 3: 0.024 < .05). The response time using type
2 and type 3 icons are similar in both tasks. In T1, the response time
of type 3 icons was slightly better than that of type 2 icons, while for
T2 the result was reversed. The task success rate of T1 also had sig-
nificant improvements when compared with the baseline type 1 icons
(0.004 < .05 of both type 2 and 3). There was no difference on task
success rate between the type 2 icons and the type 3 icons on T1. We
found the success rate of T2 was the same (90%) for all icon types.

The study results verified the efficiency of our design principles.
They showed that a well organized multidimensional cluster icon vi-
sualization provided high efficiency on cluster comparison and inter-
pretation. In addition, they showed no negative impact of using shape
to encode additional cluster statistics in type 3 icons. Moreover, even
when visualizing a large number of clusters, the type 2 and 3 icons
remained highly efficient. It took an average of only 12.86 seconds to
compare 50 multidimensional clusters with a task success rate of 90%.
This was a surprising finding which would be difficult to achieve using
PCP techniques according to Holten et al.’s study result [17]: when the
number of clusters are over five (far fewer than the 50 in our study),
the ability to identify clusters with PCP is dramatically decreased.

Furthermore, we found that the guidelines for generating similar
icons for similar clusters plays a very important role in making a pre-
cise comparison as required in T1. Several of the users were confused
when using type 1 icons to make the comparison. After the study,
many of them said that they gave the answers mainly by guessing.
The correctness is thus far worse than the results observed when using
icon types 2 or 3.

In addition to the quantitative results, we collected qualitative user
feedback on the key features of the DICON system (visual compari-
son, interpretation and interactive cluster manipulation) by consider-
ing “ease of use” and “usefulness”. As illustrated in Fig. 13(c), all
of the features had a high average score over four (five is the highest
score). The cluster comparison capability was rated as the most useful
feature and interactive cluster manipulation was considered the easi-
est feature by the study participants. Interpretation was rated slightly
lower when compared with other two features. We believe that this
is because it is a feature based on comparison and requires additional
effort to understand the meaning of the feature categories and clusters.

6.3 Interviews with Domain Experts
Using the patient dataset described previously, we conducted extended
one-on-one interviews with two medical doctors with very strong do-
main expertise. The first doctor is a former emergency physician with
over 30 years of hospital-based experience. He has published multiple
articles and book chapters on both clinical and management subjects.
The second doctor is a health care and biotechnology executive who
has, in addition to clinical experience, more than 30 years of expertise
in sophisticated managed care organizations, strategic planning, and
operations management.

Both physicians were intrigued by the interactive visualization that
DICON provides for examining and manipulating similar patient co-
horts. The physicians were attracted to the interactivity and felt that the
iconic representations provided significant value. At first, one physi-
cian remarked that the icon was more “complex” than he was used to

(e.g., bar charts). However, after brief demonstrations of the tool the
representation became clear.

Referring to DICON’s refinement capabilities, one physician said
“it provides an interesting way to define cohorts.” He was especially
interested in the drag-and-drop nature of the technique which he felt
provided a “very intuitive interface” for manipulating sets. He very
much liked the icon design which provided a concrete object for him
to analyze and manipulate. When referring to the interactive refine-
ment of cohorts, one physician stated that “as a medical director, this
is exactly what I would want to do.” The icon design let him “do it
rapidly [via] drag and drop” instead of “giving it to a programmer” to
generate a new report. One physician commented that the ability to
overlay statistical measures of quality onto the visualization was very
useful. When asked if that helped him gauge the quality of clusters, he
responded “absolutely.”

In addition to commenting on DICON’s current functionality, the
participants also made a number of suggestions for future improve-
ments. For example, the physician wanted the ability to perform at-
tribute grouping for combinations of dimensions (e.g., both sex and
age). This is a feature that we hope to introduce in future revisions of
the tool. A more complicated request made by one physician was the
ability to drag the icon for a cohort from our tool onto icons for other
system functionality. His suggestion was to use this approach to issue
requests for additional analytics to be applied to a given group of pa-
tients. The user’s request for this feature shows that the tangible icons
we designed for representing cohorts form a very powerful represen-
tation in the minds of our users. The icon itself becomes the object
that the user wishes to operate on. We believe this is a very powerful
design approach and we are exploring ways to adopt it.

7 CONCLUSION AND FUTURE WORK

In this paper, we presented DICON, an interactive icon-based mul-
tidimensional cluster visualization. It provides a novel approach to
visual cluster comparison, interpretation and adjustment. Compared
with traditional visualization techniques, DICON encodes addition-
al derived statistical information that provides visual cues to facili-
tate cluster evaluation and adjustment. DICON also scales well to ef-
fectively support large numbers of clusters. DICON’s design follows
several predefined guidelines and leveraging several well established
designs. Strong information scent and visual cues for cluster quality
evaluation, interactive adjustment and exploration are provided by this
design. Interactions are further supported for cluster manipulation. Fi-
nally, new layout algorithms as well as animated transition techniques
were introduced to satisfy DICON’s design requirements. Our eval-
uation, including a case study, user study and feedback from domain
experts, demonstrates the effectiveness of DICON. Future work in-
cludes performing additional user studies to evaluate other aspects of
the design and proposing new layout algorithms and features.
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